

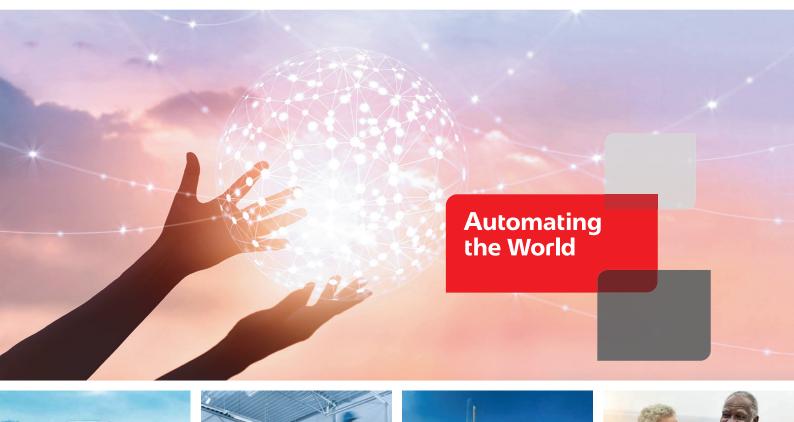
Automating the World

FACTORY AUTOMATION

ELECTROMAGNETIC CLUTCH/BRAKE TENSION CONTROLLER

GENERAL CATALOG 2023

ROLL to ROLL Collection



Our Factory Automation business is focused on "Automating the World" to make it a better, more sustainable environment supporting manufacturing and society, celebrating diversity and contributing towards an active and fulfilling role.

The Mitsubishi Electric Group is actively solving social issues, such as decarbonization and labor shortages, by providing production sites with energy-saving equipment and solutions that utilize automation systems, thereby helping towards a sustainable society. Mitsubishi Electric is involved in many areas including the following:

Energy and Electric Systems

A wide range of power and electrical products from generators to large-scale displays.

Electronic Devices

A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance

Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems

Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems

Maximizing productivity and efficiency with cutting-edge automation technology.

OVERVIEW

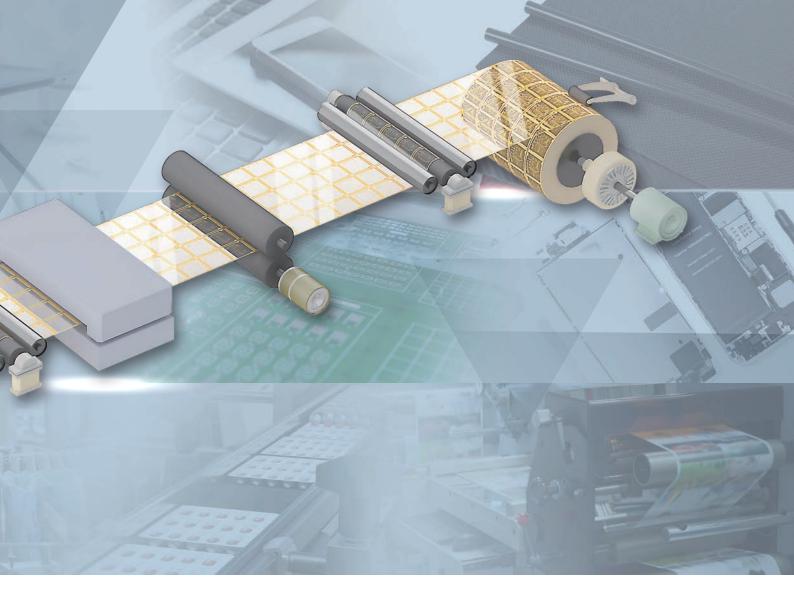
INTRODUCTION	4
ELECTROMAGNETIC CLUTCH/BRAKE	
Powder Clutch/Brake	A- 4
Tension Controller	
Tension Controller	B-4
Clutch Amplifier	B-48
Tension Meter/Tension Amplifier	B-56
Tension Detector	B-65
Common Item	
Corresponding Table for a Powder Clutch Brake and a Tension Controller with a Built-in Amplifier for the Clutch	C-2
Mechanical Load Torque Calculation Method	C-3
How to Determine the Moment of Inertia J	C-4
Moment of Inertia <i>J</i> Calculation Quick Reference Table	C-6
SI Unit and Non-SI Unit Conversion Table	C-7
Product List	C-8
List of Compatible Products	C-10
How to Confirm the Date of Manufacture	C-12

Roll-to-Roll control equipment

The Roll-to-Roll control equipment proposed by Mitsubishi Electric Corporation offers a capability for simple and efficient combinations of FA equipment to expand the capacity of tension control.

While each product improves the productivity in each field, establishing a network environment improves the visualization of production lines.

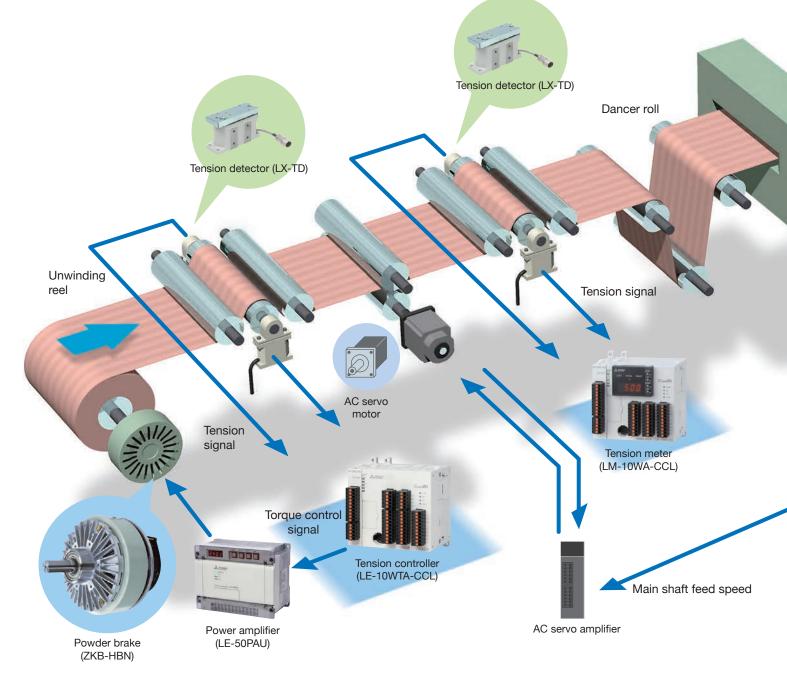
Using Mitsubishi Electric FA equipment for the entire production and processing of a variety of long materials such as film, textiles, and printable electronics maximizes the advantages.

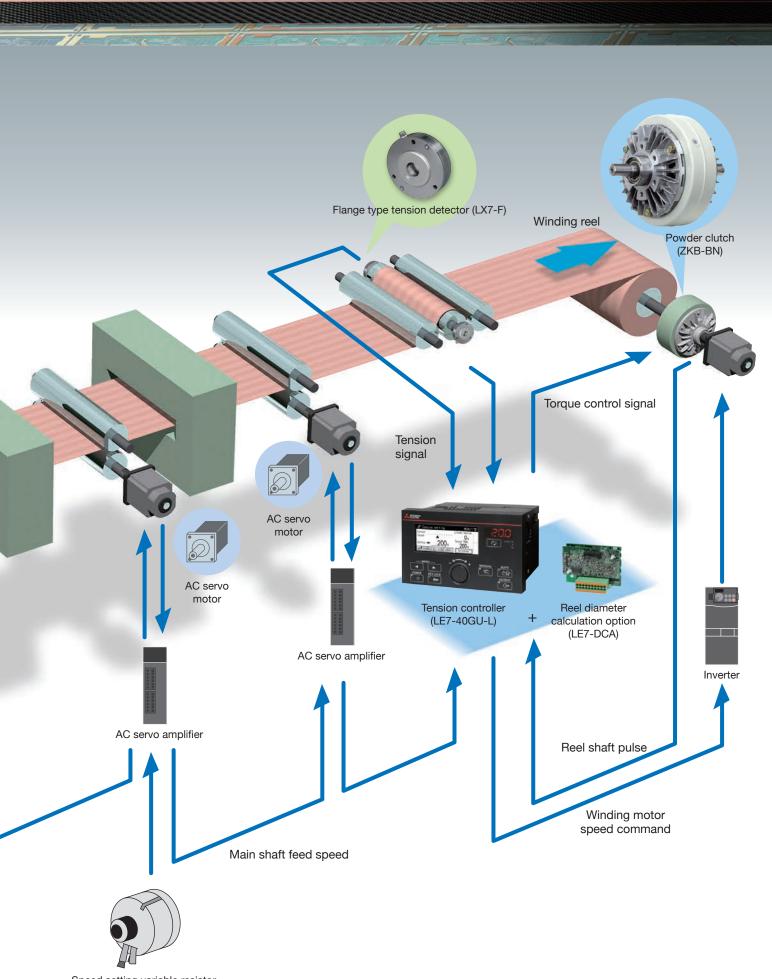

Powder Clutch/Brake

Clutch Amplifier

Tension Controller

Tension Meter





System Components for Unwinding and Winding Machines

For winding and unwinding machines for long materials such as paper, film, thread, electric wire, various sheets, and tape, technology for controlling the material tension is important to ensure higher speed and performance.

As a general electric manufacturer, Mitsubishi Electric Corporation provides system components for various products ranging from actuators such as clutches and brakes to tension controllers that control them.

Speed setting variable resistor

Powder Clutch/Brake

The powder clutches and brakes of Mitsubishi Electric, which use magnetic iron powder for transmitting torque, offer advantages such as a smooth fluid clutch and high efficiency upon coupling of the friction plate clutches.

These products are now indispensable for tension control as actuators for winding and unwinding long materials such as paper, thread, electric wire, various sheets, and tape. They are also suitable for buffer startup, power absorption, and overload safety devices (torque limiter).

1. Easy control over a wide range

Transmission torque changes continuously in response to changes in the exciting current, and so can be easily controlled over a wide range.

2. Continuous slip operation

The powder enables continuous slip on the working surface as well as stable transmission torque regardless of the slip rotation speed.

3. Stable torque

Due to the shape of the operating surface and powder leakage prevention structure, the distribution of powder can be kept uniform and stable torque can be reproduced even if the current is repeatedly turned on and off.

4. Large heat capacity

The products using powder have excellent heat resistance and an ideal cooling structure, and so can be used even in harsh continuous slip operation. 5. Smooth connection and drive

With almost equal coefficients of static and dynamic friction, load-based acceleration/deceleration can be obtained without shock at the time of complete connection.

Powder clutch

Powder brake

Explanation of icons	5		
ि सि : Protr	uding shaft type	: Through shaft type	
Powder clutch	Product lineup (rated torque: N·m)	Powder brake	Product lineup (rated torque: N·m)
ZKG-AN	0512510	ZKG-YN	05125
ZKB-AN	0.6 3 6	ZKB-YN	0.6 3 6
ZKB-BN	12350	ZKB-XN	12 23 50
Natural cooling type Forced air cooling type	100200	Natural cooling type Forced air cooling type	100200
ZA-A1	6 12 25 50 100 200	ZKB-HBN	25 50 100 200
		ZA-Y	6 12 25 50
		Natural cooling type	100 200
		ZX-YN	36 12

Tension Controller Lineup

Feedback Type Tension Controller

This type of controller directly measures the material tension using the tension detector, and performs feedback control so that the tension during unwinding and winding matches the set value. This method can accurately control tension with regard to the set value.

LE7-40GU-L tension controller

Built-in clutch amplifier.

Supports various FA networks, including CC-Link V2. [Rated output: 24 V DC, 2.7 A]

LE-10WTA-CCL tension controller

Enables tension control for up to 2 shafts when the optional adapter is added.

Incorporates the CC-Link V2 remote device station function.

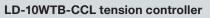
LE-30CTN tension controller

Clutch amplifier built in. [Rated output: 24 V DC, 3 A]

LE-40MTA(-E)/LE-40MTB(-E) tension controller

Clutch amplifier built in. [Rated output: 24 V DC, 4 A]

LE-10WTA-CCL/LD-10WTB-CCL tension controller


Feedback control (LE-10WTA-CCL)	Open-loop control (LD-10WTB-CCL)	Feed forward/feedback combined control
Up to 2-shaft control	CC-Link V2	RS-422 communication (GOT connection)
RS-485 communication (LM-10WA-485 used)	USB interface (LM-10WA-USB used)	

Open-Loop Type Tension Controller

This type of controller detects the reel diameter using sensors and controls the unwinding and winding torque. This method can stably control tension without being sensitive to sudden disturbances.

LE7-40GU-L + LE7-DCA reel diameter calculation option

Supports open-loop control with LE7-40GU-L + LE7-DCA.

Enables tension control for up to 2 shafts when the optional adapter is added. Incorporates the CC-Link V2 remote device station function.

LD-30FTA tension controller

Open-loop type tension controller using the integrated thickness monitoring method (based on the initial diameter and material thickness). [Rated output: 24 V DC, 3 A]

LD-05TL tension controller

Order production from April 2024

This type of tension controller performs unwinding and winding with the reel diameter signal from the touch lever (potentiometer) as input. [Rated output: 24 V DC, 0.5 A]

> End of September 2025 Scheduled completion of production

*: LE-10WTA-CCL + LD-10WTB-DCA LD-10WTB-CCL + LE-10WTA-TAD

Mitsubishi Electric offers various types of equipment including tension controllers, tension detectors and tension meters required for tension control to allow you to choose the ideal products for your application and control needs.

Tension Meter/Tension Amplifier

Tension meters display the material tension detected by the tension detector, and output the corresponding signal to external equipment. Some types of tension meters can handle multiple shafts or can perform digital display suitable for tension monitoring.

LM-10WA-CCL tension meter

Tension meter displays the tension, and outputs a signal in proportion to the tension. Incorporates the CC-Link V2 remote device station function

Tension meter displays the tension, and outputs a signal

LM-10PD tension meter

in proportion to the tension.

LM-10TA tension amplifier

Compact tension amplifier outputs a voltage signal (0 to 5 V DC or 10 V DC) in proportion to the input signal sent from the tension detector.

Clutch Amplifier

These devices change the current and voltage of powder clutches and brakes in accordance with variable resistors provided on the panel, external signals and external variable resistors.

LD-10PAU-A/LD-10PAU-B power amplifier

Constant-current control type clutch amplifier controls the exciting current of 24 V DC type compact clutches and brakes.

[Rated output: 24 V DC, 1.0 A] [RS-485 communication function built in (LD-10PAU-B)]

LE-50PAU power amplifier

Constant-current constant-voltage control type clutch amplifier controls the exciting current of clutches and brakes. [Rated output: 24 V DC, 4 A]

LD-40PSU power supply unit

Constant-voltage control type power supply unit adjusts the output (0 to 24 V DC) in accordance with the setting of the variable resistor provided on the panel surface or the input signal (0 to 5 V DC) for

control sent from the outside. [Rated output: 24 V DC, 3.8 A]

Tension Detector

The tension applied on the material translates to a load, and then this load value is accurately converted to an electrical signal.

LX-TD tension detector

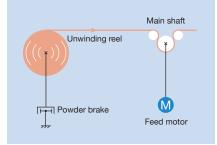
Stationary tension detector used in combination with the feedback type tension controller or tension meter to obtain the tension signal. [Rated load: 50 to 2000 N]

LX7-F tension detector

Flange type tension detector used in combination with the feedback type tension controller or tension meter to obtain the tension signal. [Rated load: 50 to 500 N]

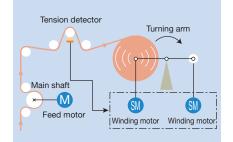
Order production from April 2024

Comparison of Various Clutches and Brakes

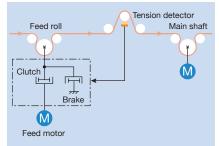

Comparison

Powder clutch/brake and friction plate type clutch/brake	Powder clutch/brake	Friction plate type clutch/brake
External dimensions	Large overall	Small
Torque control	Easy	Difficult
Slip on friction surfaces	Continuous slip possible	Not practical in principle
Engaging work	Large	Small
Mounting condition	Restricted, for example, oblique and vertical mounting not allowed	Practically no restriction
Price	Expensive	Inexpensive
Application	Especially suitable for buffer startup, tension control, and torque limiter	Suitable for engaging and braking in general
Comparison based on power feeding method to electromagnetic coil	Static coil clutch/brake	Rotating coil clutch/brake
External dimensions	Rather large, especially in axial direction	Small
Construction	Somewhat complicated due to ball bearings and others attached	Simple
Power feeding condition	No concerns	Wet type is vulnerable to power feeding failure
Rotation speed	No restrictions (restricted by other factors)	Not suitable for high-speed application
Assembly into clutch box	Easy	Somewhat complicated due to installation of brush
Maintenance	Practically none required	Brush replacement required

Usage and Control Methods


Winding, unwinding, and intermediate control

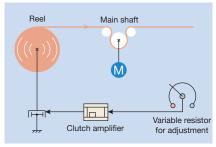
Unwinding control


- The figure above shows the outline of an unwinding control system that uses a powder brake.
- Since unwinding tension equals braking torque divided by unwinding radius, tension can be kept constant by reducing the braking torque according to the decrease in reel diameter.
- A speed increaser and speed reducer such as gears are installed as necessary between the reel shaft and the powder brake.

Winding control

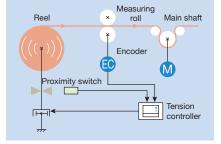
- The figure above shows the outline of a 2-shaft switchover winding control system that has a servo motor.
- This is an example of a feedback controlled tension control system based on the signals from the tension detector and in which pre-drive control for the auto feeder is also performed.

Intermediate shaft control



- The figure above shows the outline of an in-feed control system that uses a powder clutch/brake.
- In-feed control systems include a feed motor before the main shaft motor, while outfeed systems include a feed motor after the main shaft motor.

Usage and Control Methods


Types of tension control

Manual control

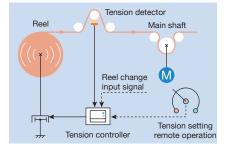
- Manual control of winding or unwinding tension and of countershaft tension in a system that uses a clutch/brake and only has small variations in reel diameters.
- Performs sudden control during stop and remote operation of the variable resistor.

Open-loop control

- Unwinding braking torque and winding torque shall be controlled based on the reel diameter measured on a non-contact basis.
- There are five types of reel diameter-detection methods. Those with fewer sensors require more settings to be made.

(1) Speed/thickness setting method: No sensor

(2) Integrated thickness method: Single sensor (reel shaft)

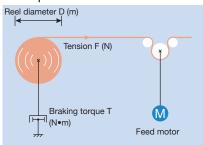

(3) Ratio calculation method: Double sensor

(4) Touch lever method: Potentiometer

(5) Ultrasonic sensor method: Ultrasonic sensor

The figure above shows a ratio calculation method using the reel shaft pulse and measuring pulse.

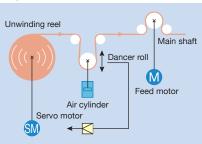
Feedback control



- Closed loop tension control using a tension detector is called the feedback method.
- When performing externally sequenced multiple-shaft switchover control, new reel preset control is performed based on the reel change input signal.

However, pre-drive control shall be performed externally.

Torque control and speed control


Torque control

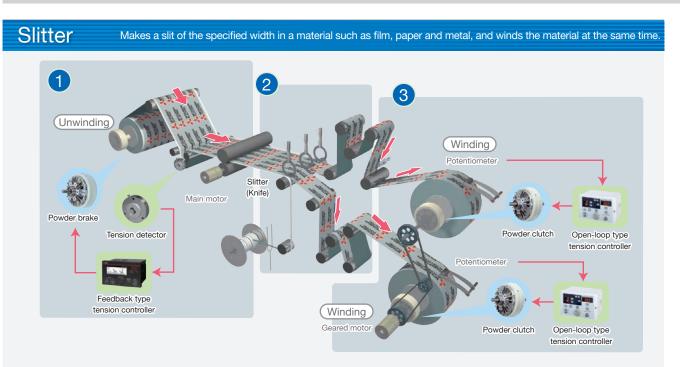
- As is shown in the figure above, when the braking torque of the powder brake for the unwinding reel is T (N·m), the tension (F) of the unwound material equals 2T/D (N).
- Tension is kept constant by decreasing the braking torque according to the decrease in the reel diameter D (m).
- "Torque control" refers to the type of tension control system, such as the one shown in the figure above, in which braking torque or winding torque is applied to the winding or unwinding reel so as to deliver the prescribed tension to the material.

Torque control requires no dancer rolls and can allow for the construction of a system that uses simple tension control, such as manual or open-loop control. In this system, a powder clutch/brake or servo motor (torque mode) can be used as an actuator.

Speed control

- "Speed control" refers to the type of system, such as the one shown in the figure above, in which the rotation speed of the unwinding reel or feed reel is controlled so as to keep the dancer roll in the target position. The position of the dancer roll is detected by a potentiometer.
- Since the dancer roll moves down when the in-feed speed is too fast, and moves up when it is too slow, this system requires fast response and stable control operation. The absolute precision of tension, however, depends on the precision of the air pressure. Please note that the tension controller manufactured by Mitsubishi Electric cannot perform speed control. Mitsubishi Electric offers motion controllers and inverters as control equipment for speed control.

This system is suitable for lower tension control in a system with small operation tension in proportion to the inertia compensated tension upon acceleration or deceleration or for a system that is designed to handle materials with low elasticity. A servo motor can be used as the actuator in this type of system.


Various Manufacturing Processes Require

agent on the film. When a coated film is dried in a later process, it may elongate or shrink due to fluctuations in temperature. Tension control is required during winding and unwinding of film.

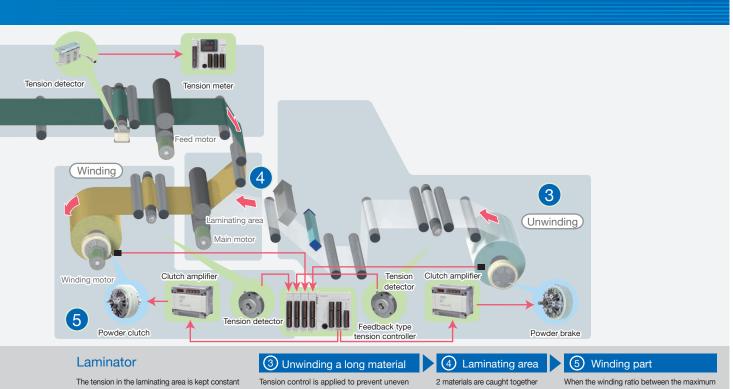
The feedback type tension controller ensures highly accurate tension control.

winding is long, the tension is controlled also in the mid point.

The basic structure consists of winding, unwinding, and Slitter (knife), and a tension controller is provided as the winding and unwinding processes greatly affect the product quality.

1 Unwinding a long material

The tension detector measures the tension which is then controlled to be constant by the feedback type tension controller, which changes the feeding voltage to the powder brake according to the measured tension.


2 Slit part

The slitter (knife) cuts the sheet to the specified width using the knife laid out in the line center. The optimal tension is maintained before and after knifing to ensure clean cutting.

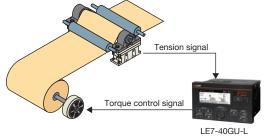
③ Winding of long material

The combined operation of potentiometer and open-loop type tension controller securely controls the tension. The open-loop control is also effective to control the tension when there is no space to mount a tension detector.

Tension Control

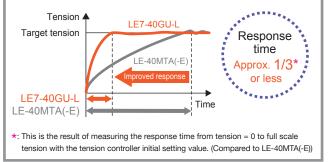
The tension in the laminating area is kept constant to prevent warps and wrinkles, and to improve the bonding quality in the laminating area. Laminators are classified into several types by binding method such as dry laminator, wet laminator, hot-melt laminator and extrusion laminator. Tension control is applied to prevent uneven application of the coating material. The feedback type tension controller ensures highly accurate tension control. 2 materials are caught together and bonded to each other. At the same time, the main motor determines the production line speed.

When the winding ratio between the maximum diameter and the minimum diameter is large, taper tension control can be used as needed to improve the winding quality. The tension controller has a taper tension function, and the taper ratio can be changed easily.

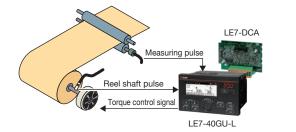


LE7-40GU-L Tension Controller

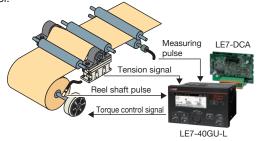
Compatible with various control methods


Feedback Control

While the material tension is directly monitored with the tension detector, feedback control is performed so as to match the target tension.


High Control Responsiveness

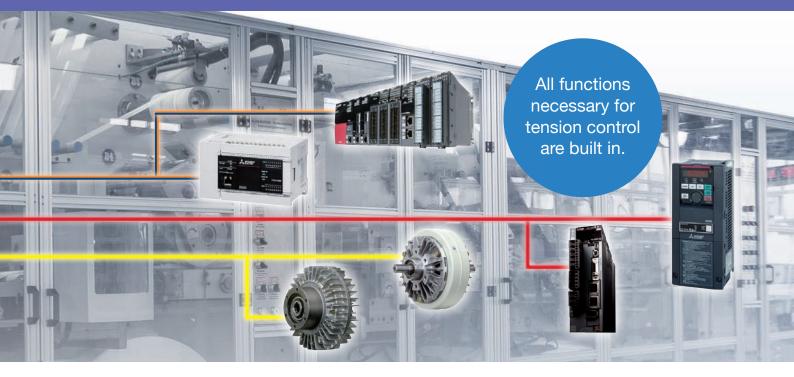
Thanks to high control responsiveness, the tension is stabilized even during acceleration/deceleration such as when starting and stopping the material line. Various functions are standard equipment so that the product can be used more reliably for diverse applications.



Feed Forward/Feedback Combined Control

This method combines highly stable open-loop control and highprecision feedback control to implement more advanced tension control.

This method keeps the tension constant by controlling the torque according to changes in the reel diameter which are calculated


Other features include:

Open-Loop Control

using the signal from the sensor.

Constant slip control = Stall/new reel preset automatic calculation = Automatic calculation of inertia compensation = Broken liner taper tension control
 Reel diameter/length measurement timing detection = Peripheral speed synchronization signal = Pre-drive output
 etc.

This tension controller is easy to handle with an easy-to-read display and easy-to-understand panel design in addition to sophisticated control functions.

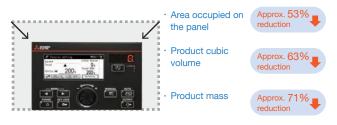
Also equipped with a clutch amplifier for a powder clutch/brake, you can easily introduce high-performance tension control.

Easy to use

A 3.8-inch high-resolution TFT liquid crystal touch panel monitor enables intuitive operation. The controller supports English, Japanese, and Chinese (simplified).

 100 Screen number input
 ★ 00

 111
 211
 ESC


 7
 8
 9
 0

 4
 5
 +/ DEL

 1
 2
 .
 ENT

Compact housing


The product is significantly smaller and lighter than the standard product*. With a clutch amplifier also built into the compact housing, the powder clutch/brake can be controlled directly.

*: LE-40MTB(-E), LE-40MTA(-E)

Supports various communications

The controller includes Ethernet and RS-485 communication functions as standard and can connect to existing FA networks. It can also handle tension control in conjunction with network-compatible drive equipment such as inverters and servo amplifiers.

Connection to CC-Link network with LE7-CCL network option

Ethernet saves man-hours and enables longdistance transmission

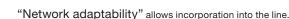
LE-10WTA-CCL LD-10WTB-CCL

Tension Controller

For diverse tension control

LE-10WTA-CCL

Tension detector input_adapter____


tension controller

Ð

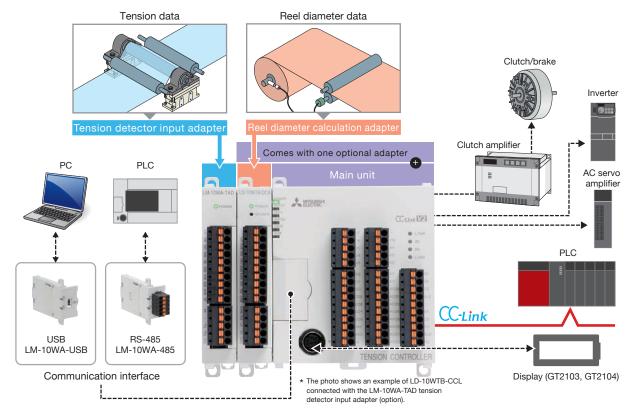

High-functional films, high-functional fibers and printed electronics ... The following models expand the possibilities of diverse tension control.

By connecting the tension detector input adapter and reel diameter calculation adapter to the main unit, various methods of tension control are possible.

12

Highly advanced tension control

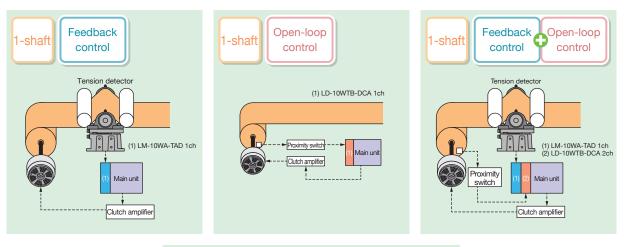
Enable tension control for up to 2 shafts

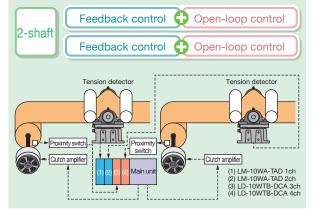

Diversified communication functions

Improved support for motor control

Enable manipulation and display of settings from the panel using the graphic operation terminal.

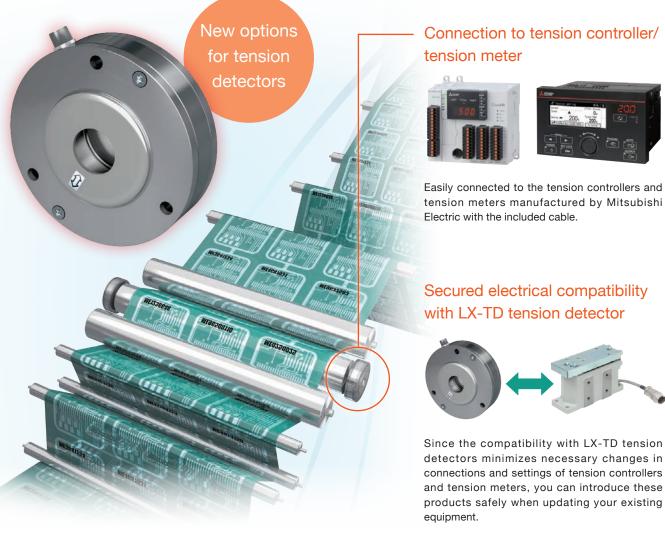
GT2104-P Display main body





The LE-10WTA-CCL is supplied with one tension detector input adapter as an accessory. The LD-10WTB-CCL is supplied with one reel diameter calculation adapter as an accessory.

[Control Examples]


[System Configuration]

LX7-F Flange-Type Tension Detector

This flange type tension detector is electrically compatible with a stationary tension detector (LX-TD). It can be attached directly to the wall of equipment, minimizing the width of the equipment. This detector, with a smaller footprint than a stationary tension detector, can be used for more complicated material path line devices and for tension control with a high degree of freedom.

Note: The color scheme of the dedicated cable is different. Refer to the manuals for details.

Built-in High-accuracy sensor

The "differential transformer sensor", proven with the standalone type (LX-TD Series), is mounted in the body. This sensor is capable of highly accurate load measurements with its high output voltage and resistance to electrical noise. In addition, the sensor is resistant to impact and has outstanding durability.

Thin disc type

The thin body allows the equipment width to be minimized. A high degree of layout freedom is achieved as the path line can be changed easily and reels can be set near each other.

Nickel plated iron body

By using iron for the body, the thermal expansion rate is the same as that of other machine frames, thus suppressing the effects of ambient temperature. The surface is treated with electroless nickel plating to increase the corrosion resistance.

Electromagnetic Clutch/Brake

Powder Clutch/Brake

Table of Contents

ELECTROMAGNETIC CLUTCH/BRAKE

LINE-UP	A-3
Powder Clutch/Brake	
Features	A-4
Basic structure and operation	A-4
Precautions on mounting	A-5
Performance	A-6
Structure diagram (typical example)	
ZKG-AN micro powder clutch	A-10
ZKB-AN powder clutch	A-12
ZKB-BN powder clutch	A-14
ZA-A1 powder clutch	A-18
ZKG-YN micro powder brake	A-20
ZKB-YN powder brake	A-22
ZKB-XN powder brake	A-24
ZKB-HBN powder brake	A-28
ZA-Y powder brake	A-30
ZX-YN powder brake	A-34
Selection	A-36
Powder clutch/brake specification contact sheet	A-42
Usage precautions	A-44

	LINE-	UP		Explan	ation of icons	: Protruding shaft type	ugh shaft type
	Shaft	Cooling	Clutch	Brake	Torque (N·m)	Features	Figure page
		Natural	ZKG-AN	ZKG-YN	ZKG-AN 0.5 to 10 ZKG-YN 0.5 to 5	 Compact micro series Small moment of inertia of rotating part Available from 5 r/min 	A-10 to A-11 A-20 to A-21
	Protruding shaft	cooling	ZKB-AN	ZKB-YN	0.6 to 6	Available from 5 r/min	A-12 to A-13 A-22 to A-23
Powder type	Ð	Combination of natural cooling and forced air cooling	ZKB-BN	ZKB-XN	12 to 200	 A large heat capacity can be obtained by blowing air into the air gap. Available from 5 r/min 	A-14 to A-17 A-24 to A-27
Powc		Thermoblock cooling	-	ZKB-HBN	25 to 200	 Heat capacity increased by using a thermoblock for a driven member and by including an axial flow fan Available from 5 r/min 	A-28 to A-29
	Through- shaft	Natural	-	ZX-YN	3 to 12	 Ultra-thin type Available from 5 r/min 	A-34 to A-35
		cooling	ZA-A1	ZA-Y	ZA-A1 6 to 200 ZA-Y 6 to 200	 Heat capacity increased by rotating the periphery to improve heat dissipation Available from 15 r/min 	A-18 to A-19 A-30 to A-33

Powder Clutch/Brake

Features

The powder clutches and brakes of Mitsubishi Electric, which use magnetic iron powder for transmitting torque, offer advantages such as a smooth fluid clutch and high efficiency upon coupling of the friction plate clutches.

Mitsubishi Electric is a pioneer of powder clutches and brakes in Japan and, with its extensive know-how, track record and achievements, has been fulfilling customers' needs.

Taking advantage of many features, these products are now indispensable for tension control as an actuator for winding and unwinding long objects such as paper, thread, electric wire, various sheets, and tape. They are also suitable for buffer startup, power absorption, and overload safety devices (torque limiter).

1. Easy control over a wide range

Transmission torque changes continuously in response to changes in the exciting current, so the transmission torque can be easily controlled over a wide range.

2. Continuous slip operation

The powder enables continuous slip on the working surface as well as stable transmission torque regardless of the slip rotation speed.

However, the powder must be used within the permissible continuous heat dissipation.

3. Stable torque

Due to the shape of the operating surface and powder leakage prevention structure, the powder is always distributed evenly, and therefore stable torque can be reproduced even if the current is repeatedly turned on and off.

4. Large heat capacity

The products using powder have excellent heat resistance and an ideal cooling structure, and so can be used even in harsh continuous slip operation.

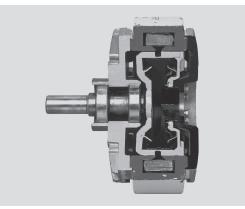
5. Smooth connection and drive

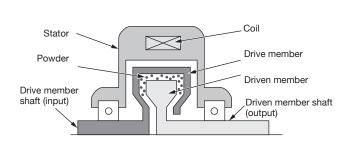
With almost equal coefficients of static and dynamic friction, load-based acceleration/deceleration can be obtained without shock at the time of complete connection.

Basic structure and operation

The basic structure of the powder clutch is shown in the figure at right. The drive member (input side) and driven member (output side) are placed on a concentric cylinder separated by a powder gap, and both members are supported by bearings so that they can freely rotate.

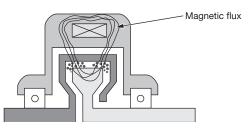
Powder with high magnetic permeability (magnetic iron powder) is put in the powder gap, and the exciting coil is arranged on the outer circumference so that the magnetic flux flows to it.


While the drive member is rotating without being excited, the powder is pressed against the working surface of the drive member by centrifugal force, leaving the drive member disconnected from the driven member.

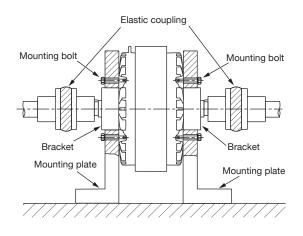

When the coil is excited, powder is connected in a chain along the generated magnetic flux. At this time, torque is transmitted by the coupling force between powders and the frictional force between the powder and the working surface.

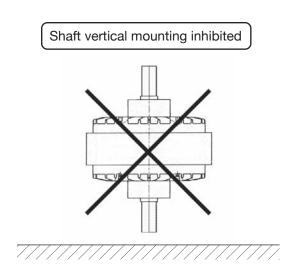
Thus, the powder clutch can also be called a friction clutch using powder as a medium.

In addition, the product in which the driven member (output side) is fixed becomes a powder brake.


Cross section of ZKB-XN powder brake

When shut down


When current is not passed through the exciting coil, the clutch is released and torque is not transmitted. At this time, powder is pressed against the outer periphery of the powder gap by centrifugal force.



When connected

When the coil is excited, the magnetic flux connects the powder in a chain inside the powder gap and transmits the torque.

Precautions on mounting

- Powder clutch/brake cannot be used while mounted with the shaft perpendicular to the mount (uniform distribution of powder is not obtained).
- (2) Do not use with the input and output reversed.It is not recommended due to durability and torque stability.
- (3) Be sure to use an elastic coupling to connect to the load shaft. When mounting a pulley or the like, observe the allowable shaft load range.
- (4) Key dimensions are compliant with the old JIS (except for ZX series).

For details, refer to the external dimensions of each model.

- (5) Be careful of the tightening torque and overlapping allowance of the mounting bolt.
 - For the tightening torque, refer to the instruction manual.
 - Secure the following values for the overlapping allowance of the mounting bolt.

(D: Nominal diameter of bolt)

When the bracket is made of steel: 0.8 to 1.2 D

When the bracket is made of cast iron or aluminum: 1.5 to 2.0 D

- (6) Coil has no positive or negative polarity.
- (7) Be sure to perform break-in operation before starting regular operation. (For details, refer to the usage precautions.)
- (8) For the ZKG series, note the heat dissipation area of the mounting plate.
- (9) Since the outer periphery of the ZA series rotates, be sure to cover the whole body with a wire mesh or the like with good ventilation.
- (10) For details, refer to the installation example of each model.

Tension Controller

Performance

1. Exciting current vs. torque characteristics

Fig. 1 shows an example of the exciting current vs. torque characteristics of a powder clutch.

As is clear from this figure, the torque is proportional to the exciting current over a wide range, indicating good controllability of torque. Although there are some differences depending on the model, the torque is almost proportional to the current in the range of 5 to 100% of the rated torque.

2. Slip rotation speed vs. torque characteristics

Fig. 2 shows the slip rotation speed vs. torque characteristics when the current is set as a parameter. If the exciting current is kept constant, torque can be kept constant irrespective of the slip rotation speed (the difference in rotational speed between the drive member and driven member). This is because powder (magnetic iron powder), which is also called semisolid, is used as a medium for power transmission. In other words, this characteristic means that there is no difference between the static friction torque and dynamic friction torque, indicating the ease of torque control.

This characteristic not only allows continuous slip and increases the heat capacity but also widens the scope of application of powder clutches and brakes such as for tension control and buffer startup.

In the case of tension control, for example, the slip rotation speed of the clutch/brake changes according to the reel diameter, but this characteristic enables simple and accurate control merely by controlling the exciting current regardless of the slip rotation speed.

3. Operation characteristics

This section explains the operation characteristics required when you want to control the startup time or when considering highfrequency repetitive operations.

Fig. 3 shows the operations of engaging and disengaging the powder clutch. When voltage is applied to the exciting coil, the exciting current rises exponentially with the coil time constant (T = L/R) determined by resistance R and inductance L of the exciting coil. Torque rises very slightly behind the exciting current to the setting torque following the exciting current regardless of the slip rotation speeds on the driving side and driven side. The clutch continues to accelerate the load with that torque. In other words, the clutch can raise the torque to the preset level even if the driving side and driven side are not perfectly connected. This characteristic is ideal for buffer start/stop and fast start/stop as well as a large clutch heat capacity. When particularly rapid connection or braking is required, the rise of torque can be accelerated by exciting the coil with a high voltage power supply after reducing the coil time constant by inserting a series resistance in the exciting coil, or by overexciting the voltage 2 or 3 times the rated voltage by the torque time constant.

At the rated excitation, the torque rises perfectly in coil time constant T of 4 or 5T. On the other hand, the time taken for the torque to disappear when the excitation is interrupted is approx. 1 T.

For the coil time constants for individual models, refer to the respective specification tables.

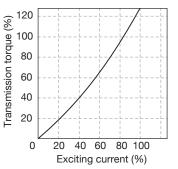


Fig. 1 Exciting current vs. torque characteristics (typical example)

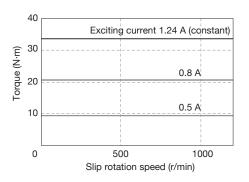


Fig. 2 Slip rotation speed vs. torque characteristics

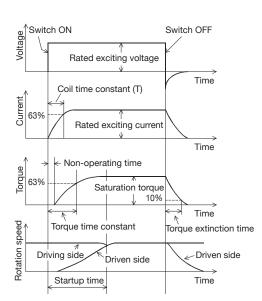


Fig. 3 Operating characteristics of powder clutch

Fension Controller

Common Item

Table 1 ZKB series coil time constants and torque time constants

Model name	Coil time constant (s)	Torque time constant (s)
ZKB-0.06AN	0.03	0.09
ZKB-0.3AN	0.08	0.13
ZKB-0.6AN	0.08	0.13
ZKB-1.2BN	0.10	0.18
ZKB-2.5BN	0.12	0.20
ZKB-5BN	0.13	0.27
ZKB-10BN	0.25	0.5
ZKB-20BN	0.35	1.2

Table 2 ZA series coil time constants and torque time constants

Model name	Coil time constant (s)	Torque time constant (s)
ZA-0.6A1	0.04	0.08
ZA-1.2A1	0.04	0.10
ZA-2.5A1	0.06	0.13
ZA-5A1	0.09	0.17
ZA-10A1	0.14	0.30
ZA-20A1	0.30	0.90
ZA-0.6Y	0.10	0.20
ZA-1.2Y1	0.13	0.20
ZA-2.5Y1	0.15	0.25
ZA-5Y1	0.17	0.35
ZA-10Y1	0.30	0.70
ZA-20Y1	0.60	1.0

Table 3 ZKG series coil time constants and torque time constants

Model name	Coil time constant (s)	Torque time constant (s)
ZKG-5AN	0.02	0.04
ZKG-10AN	0.03	0.07
ZKG-20AN	0.05	0.10
ZKG-50AN	0.06	0.13
ZKG-100AN	0.09	0.37
ZKG-5YN	0.020	0.04
ZKG-10YN	0.020	0.04
ZKG-20YN	0.034	0.07
ZKG-50YN	0.045	0.09

Table 4 ZX-YN series coil time constants and torque time constants

Model name	Coil time constant (s)	Torque time constant (s)
ZX-0.3YN-24	0.035	0.09
ZX-0.6YN-24	0.05	0.1
ZX-1.2YN-24	0.07	0.15

Note 1. The time constants of ZKB-XN, YN, WN, and HBN are the same as those in Table 1.

Note 2. The values in the tables are measurement examples of the slip rotation speed of 200 r/min after completion of runningin.

If the powder clutch has been left for a long time or the idling time is long, the torque time constant may become larger. Also note that as the powder deteriorates, the torque time constant increases.

Note 3. The tables show the values at a coil temperature of 75°C.

4. Allowable continuous heat dissipation

Although the powder clutch/brake can be used in continuous slip mode, the temperature of clutch/brake parts including powder rises due to the heat generated by slip. To solve this problem, an allowable continuous heat dissipation is provided for each model, and the powder clutch/brake needs to be used within that range.

Note that the allowable continuous heat dissipation differs depending on the cooling method: natural cooling, forced air cooling, or other means. The rated value is shown for each model, but be careful regarding natural cooling as the value varies depending on the input rotation speed.

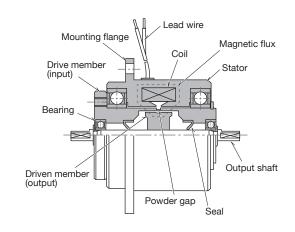
For calculation of the heat dissipation being used, refer to page A-36.

5. Allowable connection workload

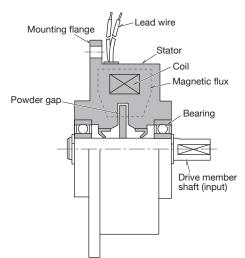
When starting or braking loads with inertia with the clutch or brake, the powder and working surface slip and generate frictional heat. This heat generation raises the temperature of each part of the clutch/brake as well as the powder itself. If the heat generation is excessive, the temperature of the friction part rises abnormally. To prevent this problem, an allowable connection workload is determined for each model. The clutch/brake should, therefore, be used within this range.

6. Idling torque

Even if the exciting current is interrupted completely, idling torque is generated due to mechanical losses arising from residual magnetism of the powder, grease of the bearing, and friction such as a seal.

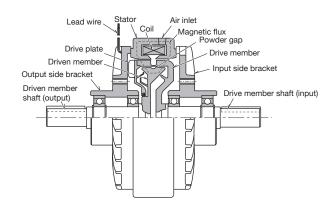

Brakes cannot perform torque control below this idling torque.

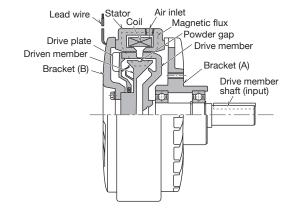
In the case of clutches, idling torque refers to the torque caused by the output shaft when forced to rotate while being dragged by the input shaft (dragged torque). Clutches, like brakes, cannot perform torque control below this torque.

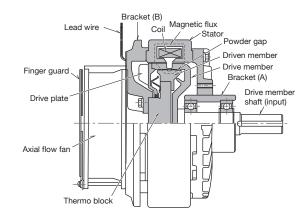

Since this idling torque depends on the model, refer to the specifications of each model.

Structure diagram (typical example)

ZKG-AN structure diagram (typical example)

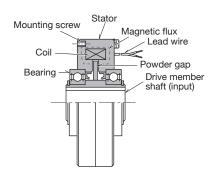


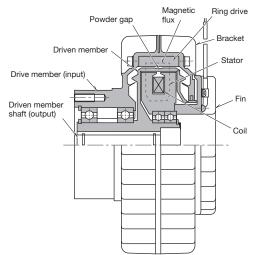

ZKG-YN structure diagram (typical example)


ZKB-XN structure diagram (typical example)

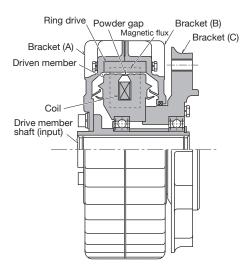
ZKB-BN structure diagram (typical example)

ZKB-HBN structure diagram (typical example)


Tension Controller


Common Item

Common Item

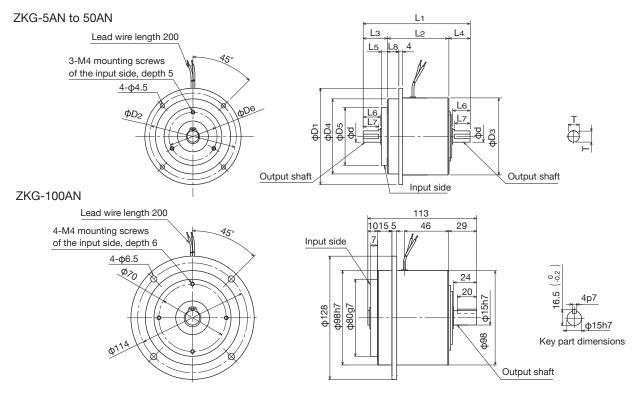

ZX-YN structure diagram (typical example)

ZA-A1 structure diagram (typical example)

ZA-Y1 structure diagram (typical example)

ZKG-AN micro powder clutch

Rated torque: 0.5 to 10 N·m Natural cooling protruding shaft type Compact design micro series Small moment of inertia of rotating part Available from 5 r/min

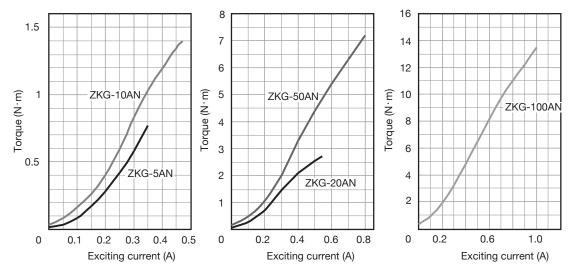


Specifications

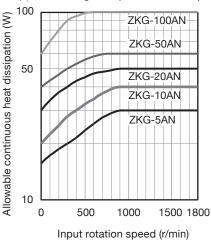
(Rated voltage: 24 V Do										
	Rated torque	Coil (75°C)			Moment of in	ertia J (kgcm²)	Allowable rotational speed	Weight (kg)		
Model name	(N·m)	Current (A)	rent (A) Power (W) Time c		Input side	Input side Output side				
ZKG-5AN	0.5	0.35	8.4	0.02	2.1×10 ⁻¹	1.7×10 ⁻²	1800	0.67		
ZKG-10AN	1	0.47	11.3	0.03	3.46×10 ⁻¹	4.6×10 ⁻²	1800	0.88		
ZKG-20AN	2	0.55	13.2	0.06	6.80×10 ⁻¹	1.03×10 ⁻¹	1800	1.27		
ZKG-50AN	5	0.8	19.2	0.06	1.85	4.0×10 ⁻¹	1800	2.3		
ZKG-100AN	10	1.0	24	0.09	5.30	1.10	1800	4.1		

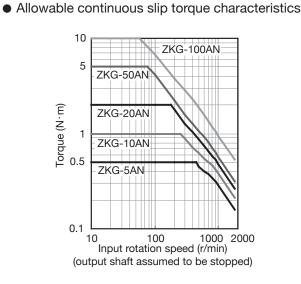
Note: The idling torque is 3% or less of the rated torque at 1000 r/min and 5% or less at 1800 r/min.

Outline dimensions (mm)


Model name	L1	L2	Lз	L4	L5	L6	L7	L8	D1	D2	Dз	D4 (h7)	D5 (g7)	D6	d (g6)	Т
ZKG-5AN	77	47	16.5	13.5	5.5	10.5	9	8.5	70	60	50	48	40	30	5	4.5
ZKG-10AN	83	48.5	18.5	16	5.5	12	10	8.5	76	66	56	54	42	34	7	6.5
ZKG-20AN	95	53	22.5	19.5	6.5	15	13	9.5	85	75	65	63	48	40	9	8.5
ZKG-50AN	111	64	25	22	6	18	16	12	100	90	80	78	60	50	12	11.5
ZKG-100AN		See the above figures.														

Tension Controller


Common Item


Characteristics

• Standard torque characteristics (typical example)


• Allowable continuous heat dissipation characteristics (see item (4) of mounting example for heat dissipation area)

Mounting example

1. Mounting the ZKG-AN type powder clutch

- (1) Fasten the fitting part of the mounting flange to the mounting plate and fix it.
- (2) Always use an elastic coupling to connect the clutch and load shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling to be used.
- (3) When mounting a pulley or the like, ensure it is within the range of allowable shaft load (see page A-47).
- (4) The heat dissipation area of the mounting plate should be at least 350 cm² (ZKG-100AN is 650 cm²) or more.

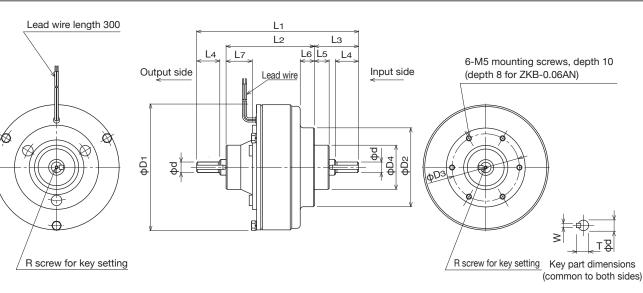
(5) Pay attention to the length of the mounting screw on the input side (using a screw of the depth or more described in the external dimensions may damage the internal bearing).

Timing pulley and others Mounting flange Attachment for brake

2. When the ZKG-AN type powder clutch is used as a brake

ZKB-AN powder clutch

Rated torque: 0.6 to 6 (N·m) Natural cooling protruding shaft type Available from 5 r/min


Specifications

(Rated voltage: 24 V DC)

Model name	Rated torque (N·m)		Coil (75°C)		Moment of in	iertia J (kgm²)	Allowable		Powder weight
		Current (A)	Power (W)	Time constant (s)	Input side	Output side	rotational speed (r/min)	Weight (kg)	(g)
ZKB-0.06AN	0.6	0.46	11	0.03	6.10×10 ⁻⁵	6.60×10 ⁻⁶	1800	1.8	3.5
ZKB-0.3AN	3	0.53	12.7	0.08	3.00×10 ⁻⁴	8.00×10 ⁻⁵	1800	3.3	7.5
ZKB-0.6AN	6	0.81	19.4	0.08	6.00×10 ⁻⁴	1.83×10 ⁻⁴	1800	4	10

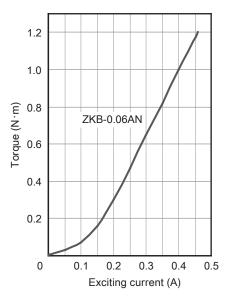
Note: The idling torque of 0.06AN is 4% or less of the rated torque, that of 0.3AN is 2% or less, and that of 0.6AN is 1% or less.

Outline dimensions (mm)

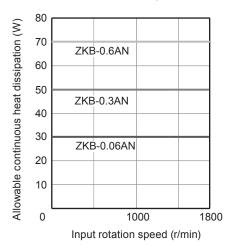
(Paint color	Munsell	10Y	7.5/1)
--------------	---------	-----	-------	---

Model name	L1	L2	L3	L4	L5	L6	L7	D1	D2	D3	D4 (g7)	Q	R		Key part		
													Diameter	Depth	d (h7)	W (p7)	T (⁰ -0.2)
ZKB-0.06AN	132	65	41	22	15	9	16	88	70	55	33	-	-	-	8	3	9.1
ZKB-0.3AN	154	84	42	22	14	13.5	24.5	120	75	64	42	-	M3	6	10	4	11.5
ZKB-0.6AN	164	86	46	26	14	16	22	134	80	64	42	-	M4	8	12	4	13.5

Tension Controller

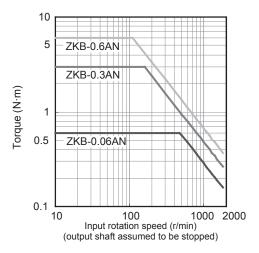

Common Item

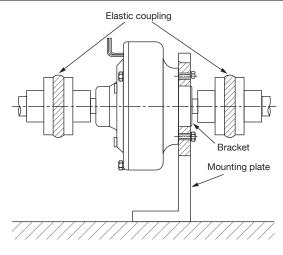
Tension Controller


Common Item

Characteristics

• Standard torque characteristics (typical example)


• Allowable continuous heat dissipation characteristics



10

• Allowable continuous slip torque characteristics

Mounting example

- (1) Fasten the fitting part of the bracket to the mounting plate and fix it.
- (2) Always use an elastic coupling to connect the clutch shaft and load shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling to be used.
- (3) When mounting a pulley or the like, ensure it is within the range of allowable shaft load (see page A-47).

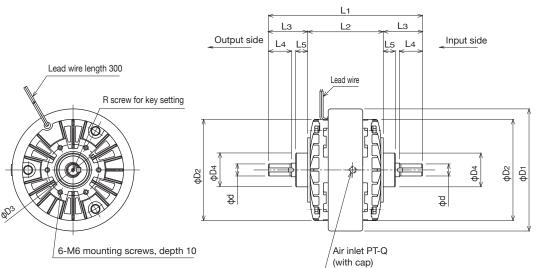
ZKB-BN powder clutch

Rated torque: 12 to 50 (N·m)

Natural cooling/forced air cooling protruding shaft type Available from 5 r/min

The heat capacity is increased by blowing air into the air gap.

Specifications


(Rated voltage: 24 V DC)

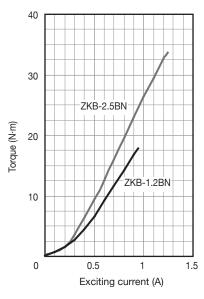
Model name	Rated torque (N·m)	Coil (75°C)			Moment of inertia J (kgm ²)			ooling allowabl issipation (slip		Allowable		Powder
		Current (A)	Power (W)	Time constant (s)	Input side	Output side	Wind pressure (Pa)	Air volume (m ³ /min)	Power (W)	speed (r/min)	Weight (kg)	weight (g)
ZKB-1.2BN	12	0.94	22.5	0.10	1.34×10 ⁻³	4.90×10-4	3×104	0.2	250	1800	5.5	20
ZKB-2.5BN	25	1.24	30	0.12	3.80×10 ⁻³	1.49×10 ⁻³	5×10 ⁴	0.4	380	1800	10	33
ZKB-5BN	50	2.15	51.5	0.13	9.50×10 ⁻³	4.80×10 ⁻³	1×10 ⁵	0.6	700	1800	16	60

Notes: 1. *: For the cooling air, be sure to use clean dry air passed through an air filter (complete oil removal type).

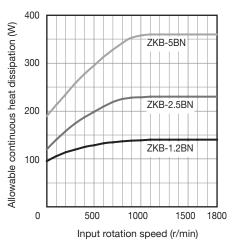
2. The idling torque is 1% or less of the rated torque.

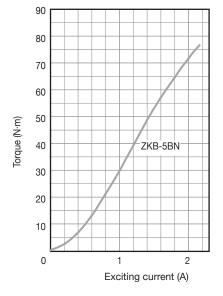
Outline dimensions (mm)

Key part dimensions (common to both sides)

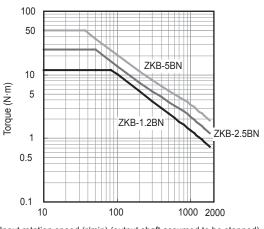

(Paint color Munse	ll 10Y 7.5/1)
--------------------	---------------

Model name	L1 L2 L3 L4 L5 D1 D2 D3 (97				1.5	D	Do	Do	D4	0	R		Key part		
woder name		(g7)	Q	Diameter	Depth	d (h7)	W (p7)	T (⁰ -0.2)							
ZKB-1.2BN	192	94	49	29	15	152	126	64	42	1/8	M4	8	15	5	17
ZKB-2.5BN	230	102	64	43	17	182	160	78	55	1/8	M5	10	20	5	22
ZKB-5BN	294	112	91	55	30	219	196	100	74	1/4	M6	12	25	7	28

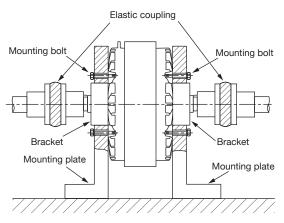

Common Item


Characteristics

• Standard torque characteristics (typical example)



 Allowable continuous heat dissipation characteristics (at natural cooling)


 Allowable continuous slip torque characteristics (at natural cooling)

Input rotation speed (r/min) (output shaft assumed to be stopped)

Common Item

- (1) Fasten the fitting part of the bracket to the mounting plate and fix it.
- (2) Always use an elastic coupling to connect the clutch shaft and load shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling to be used.
- (3) When mounting a pulley or the like, ensure it is within the range of allowable shaft load (see page A-47).
- (4) For the ZKB-5BN, install mounting plates on both sides.

Clutch Amplifier

Tension Meter/Tension Amplifier

Tension Detector

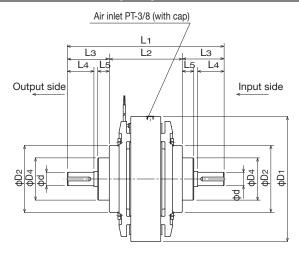
ZKB-BN powder clutch

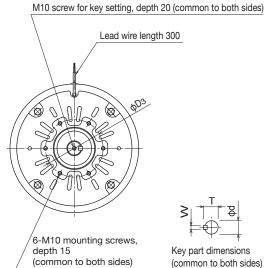
Rated torque: 100 to 200 (N·m)

Natural cooling/forced air cooling protruding shaft type Available from 5 r/min

The heat capacity is increased by blowing air into the air gap.

Specifications




											(Rated volta	age: 24 V DC)
Model name	Rated torque (N·m)	Coil (75°C)			Moment of inertia J (kgm ²)			ooling allowabl	le continuous o rate)*	Allowable rotational	Weight	Powder
		Current (A)	Power (W)	Time con- stant (s)	Input side	Output side	Wind pres- sure (Pa)	Air volume (m ³ /min)	Power (W)	speed (r/min)	(kg)	weight (g)
ZKB-10BN	100	2.4	57.6	0.25	3.50×10 ⁻²	2.50×10 ⁻²	6×10 ⁴	1.1	1100	1800	37	140
ZKB-20BN	200	2.7	64.8	0.37	9.15×10 ⁻²	6.89×10 ⁻²	5×104	1.6	1900	1800	59	225

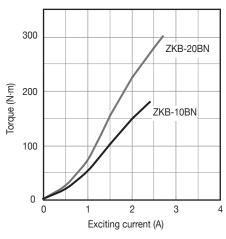
Notes: 1. *: For the cooling air, be sure to use clean dry air passed through an air filter (complete oil removal type).

2. The idling torque is 1% or less of the rated torque.

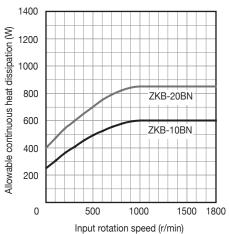
Outline dimensions (mm)

Key part dimensions (common to both sides)

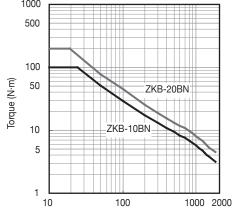
(Paint color Munsell 10Y 7.5/1)


Model name	L1	L2	Lз	L4	L5	D1	D2	D3	D4 (g7)	Key part			
										d (h7)	W (p7)	T (⁰ -0.2)	
ZKB-10BN	360	160	100	65	28	278	160	140	100	30	7	33	
ZKB-20BN	408	190	109	69	30	327	174	150	110	35	10	38.5	

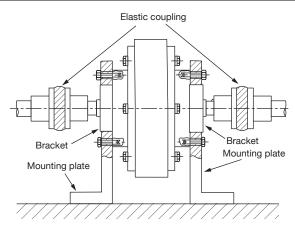
Tension Controller


Common Item

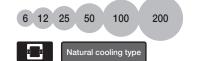
Characteristics


• Standard torque characteristics (typical example)

 Allowable continuous heat dissipation characteristics (at natural cooling)



 Allowable continuous slip torque characteristics (at natural cooling)


Input rotation speed (r/min) (output shaft assumed to be stopped)

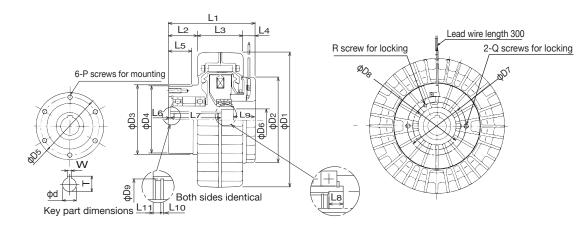
Mounting example

- (1) Fasten the fitting part of the bracket to the mounting plate and fix it.
- (2) Always use an elastic coupling to connect the clutch shaft and load shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling to be used.
- (3) When mounting a pulley or the like, ensure it is within the range of allowable shaft load (see page A-47).
- (4) Install mounting plates on both sides.

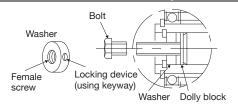
ZA-A1 powder clutch

Rated torque: 6 to 200 (N·m) Natural cooling through-shaft type Available from 15 r/min

Heat capacity increased by rotating the periphery to improve heat dissipation


Specifications

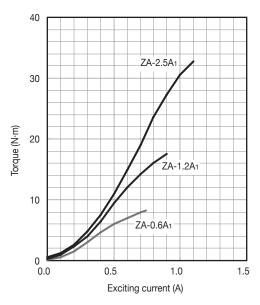
(Rated voltage: 24 V DC) Coil (75°C) Moment of inertia J (kgm²) Allowable Rated torque (N·m) Powder weight Model name rotational speed Weight (kg) Current (A) Power (W) Time constant (s) Output side Input side (g) (r/min) ZA-0.6A1 0.74 17.8 0.04 2.70×10-3 5.00×10-4 1800 14 6 2.7 1.10×10-3 ZA-1.2A1 12 0.9 21.6 0.04 6.30×10-3 1800 4.5 25 ZA-2.5A1 2.30×10-3 25 26.4 0.06 1.20×10⁻² 1800 6.3 39 1.1 ZA-5A1 50 1.4 33.6 0.09 2.60×10⁻² 5.80×10⁻³ 1800 11 60 ZA-10A1 100 2.0 48 0.14 7.00×10-2 1.50×10-2 1800 19.5 117 ZA-20A1 200 2.5 60 0.30 2.10×10⁻¹ 0.50×10⁻¹ 1000 41 255


Note: The idling torque is 2% or less of the rated torque.

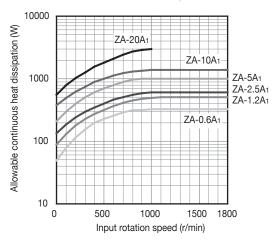
Outline dimensions (mm)

Model															D4						P)	F	1	C	2		Key pa	rt
name	L1	L2	Lз	L4	L5	L6	L7	L8	L9	L10	L11	D1	D2	Dз	(g7)	D5	D6	D7	D8	D9	Diame- ter	Depth	Diame- ter	Depth	Diame- ter	Depth	d (H7)	W (F8)	$T\left(\begin{smallmatrix} +0.2\\ 0 \end{smallmatrix} \right)$
ZA-0.6A1	86	21	58	7	16	1	56	8	21	1.1	3	128	82	73	70	60	19	60	-	16	M6	12	-	-	M4	8	15	4	16.5
ZA-1.2A1	103	32	58	13	20	2	63	13	25	1.1	4	160	96	-	80	68	24	68	54	19	M6	15	M4	10	M6	11.5	18	5	20
ZA-2.5A1	119	36	66	17	20	2	69	17	31	1.1	4	180	114	-	90	80	27	80	64	21	M6	15	M4	10	M6	12	20	5	22
ZA-5A1	141	47	74	20	20	3	103	-	35	1.3	5	220	140	-	110	95	-	95	78	31.4	M8	20	M6	12	M8	12	30	7	33
ZA-10A1	166	49	100	17	30	4	122	-	40	1.65	5	275	176	130	125	110	-	110	95	37	M10	25	M6	12	M10	18	35	10	38.5
ZA-20A1	198	59	118	21	30	3	150	-	45	1.95	6	335	218	-	155	136	-	125	-	48	M10	20	-	-	M10	15	45	12	49

Removal reference example

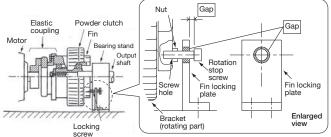


By using the groove (ϕ D9) of the clutch hollow shaft as shown on the left, you can remove the clutch easily by jacking action.

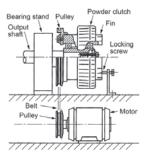

(Dimensions of washers and others should be determined as appropriate with reference to the dimensions of the shaft section.)

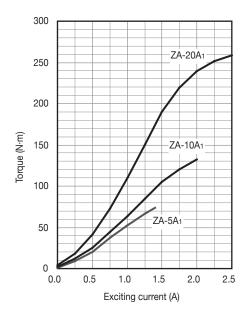
Characteristics

Standard torque characteristics (typical example)

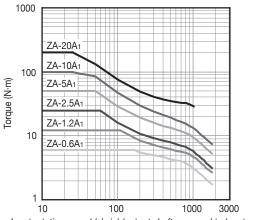


Allowable continuous heat dissipation characteristics




Mounting example

1. In the case of shaft drive



2. In the case of belt drive

• Allowable continuous slip torque characteristics

Input rotation speed (r/min) (output shaft assumed to be stopped)

- (1) Provide the fin rotation stop screw with a clearance in the axial direction as well as on the side hole of the fin detent plate (arranged by customer) (see the enlarged view). Tightening the fin applies excessive force to the bearings inside the clutch and will damage the bearings.
- (2) When using a pulley drive, observe the range of allowable axial load (see page A-47) and do not overstretch the belt. Failure to do so may cause a bearing failure (noise, locking, etc.)
- (3) Be careful of the length of the fin rotation stop screw. If the fin rotation stop screw is too long, the tip of the screw may interfere with the bracket (rotating part).

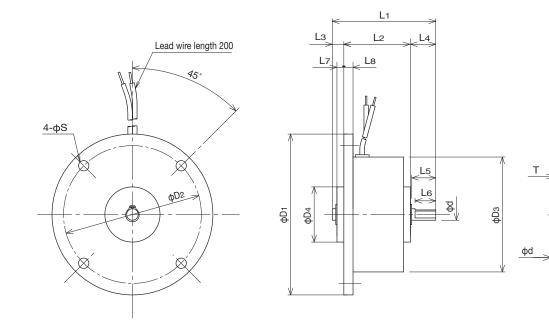
54.9.		
Model name	Screw holes	Overlapping allowance of the mounting bolt (mm)
ZA-0.6A1	2-M4×8	4-8
ZA-1.2A1	2-M6×11.5	6-11.5
ZA-2.5A1	2-M6×12	6-12
ZA-5A1	2-M8×12	8-12
ZA-10A1	2-M10×18	10-18
ZA-20A1	2-M10×15	10-15

(4) Always use an elastic coupling to connect the input side and shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling. Provide the elastic coupling with a thrust play. Installation without thrust play will cause a bearing failure (noise, locking, etc.) inside the clutch.

(5) Since the outer periphery rotates, be sure to cover the whole body with a wire mesh or with good ventilation.

ZKG-YN micro powder brake

Rated torque: 0.5 to 5 (N·m) Natural cooling protruding shaft type Compact design micro series Small moment of inertia of rotating part Available from 5 r/min



Specifications

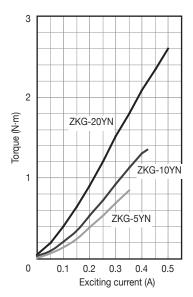
						((Rated voltage: 24 V DC)
Model name	Rated torgue (N·m)		Coil (75°C)		Moment of inertia J	Allowable rotational	Maight (kg)
wodername		Current (A)	Power (W)	Time constant (s)	(kgcm ²)	speed (r/min)	Weight (kg)
ZKG-5YN	0.5	0.35	8.4	0.02	9.40×10 ⁻³	1800	0.4
ZKG-10YN	1	0.42	10.1	0.02	2.75×10 ⁻²	1800	0.54
ZKG-20YN	2	0.5	12	0.04	5.25×10 ⁻²	1800	0.96
ZKG-50YN	5	0.6	14.4	0.05	1.25×10 ⁻¹	1800	1.3

Note: The idling torque is 3% or less of the rated torque at 1000 r/min and 5% or less at 1800 r/min.

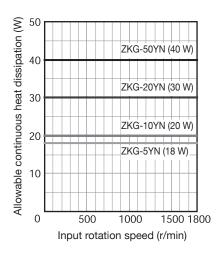
Outline dimensions (mm)

Model name	L1	L2	Lз	L4	L5	L6	L7	L8	D1	D2	Dз	D4 (g7)	S	d (g7)	Т
ZKG-5YN	45	29	5	11	10.5	9	3	4	70	60	50	24	4.5	5	4.5
ZKG-10YN	50	30	7	13	12	10	4	4	76	66	56	30	4.5	7	6.5
ZKG-20YN	59	34	9	16	15	13	6	5	90	80	70	40	4.5	9	8.5
ZKG-50YN	66	36	11	19	18	16	8	5	108	95	82	44	6	15	14

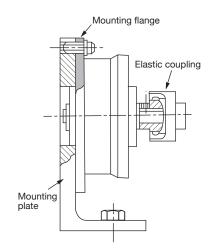
Tension Controller

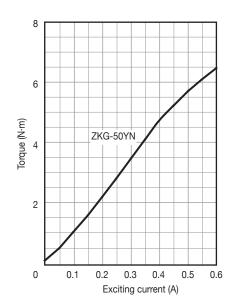

Tension Meter/Tension Amplifier

Common Item


Tension Detector

Characteristics


• Standard torque characteristics (typical example)



 Allowable continuous heat dissipation characteristics (heat dissipation area of the mounting plate is 350 cm² or more)

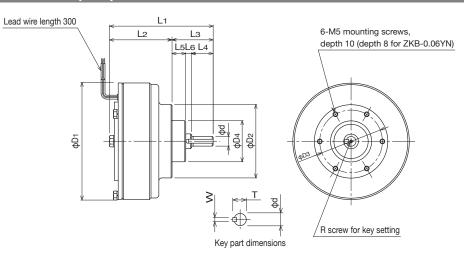
Mounting example

• Allowable continuous slip torque characteristics

- (1) Fasten the fitting part of the mounting flange to the mounting plate and fix it.
- (2) Always use an elastic coupling to connect the brake shaft and load shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling to be used.
- (3) When mounting a pulley or the like, ensure it is within the range of allowable shaft load (see page A-47).
- (4) The heat dissipation area of the mounting plate should be at least 350 cm².

ZKB-YN powder brake

Rated torque: 0.6 to 6 (N·m) Natural cooling protruding shaft type Available from 5 r/min


Specifications

(Rated voltage: 24 V DC)

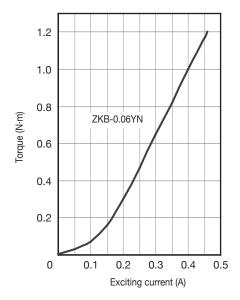
	Rated torque		Coil (75°C)		Moment of inertia	Allowable		
Model name	(N·m)	Current (A)	Power (W)	Time constant (s)	J (kgm ²)	rotational speed (r/min)	Weight (kg)	Powder weight (g)
ZKB-0.06YN	0.6	0.46	11	0.03	6.10×10 ⁻⁵	1800	1.7	3.5
ZKB-0.3YN	3	0.53	12.7	0.08	3.00×10 ⁻⁴	1800	3.1	7.5
ZKB-0.6YN	6	0.81	19.4	0.08	6.00×10 ⁻⁴	1800	3.7	10

Note: The idling torque of 0.06YN is 4% or less of the rated torque, that of 0.3YN is 2% or less, and that of 0.6YN is 1% or less.

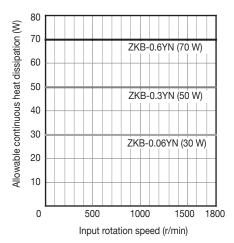
Outline dimensions (mm)

(Paint color Munsell 10Y 7.5/1)

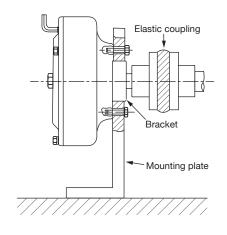
Model name	1.4		10		1.5		Dr	De	De	$D_{4}(\pi 7)$	F	3		Key part	
wodername	L1	L2	L3	L4	L5	L6	D1	D2	D3	D4 (g7)	Diameter	Depth	d (h7)	W (p7)	T (⁰ 2)
ZKB-0.06YN	93	52	41	22	15	4	88	70	55	33	-	-	8	3	9.1
ZKB-0.3YN	106	64	42	22	14	6	120	75	64	42	M3	6	10	4	11.5
ZKB-0.6YN	114	68	46	26	14	6	134	80	64	42	M4	8	12	4	13.5

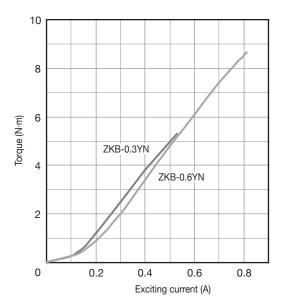

Tension Controller

Tension Controller

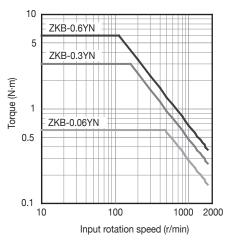

Common Item

Characteristics


Standard torque characteristics (typical example)



• Allowable continuous heat dissipation characteristics



Mounting example

• Allowable continuous slip torque characteristics

- (1) Fasten the fitting part of the bracket to the mounting plate and fix it.
- (2) Always use an elastic coupling to connect the brake shaft and load shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling to be used.
- (3) When mounting a pulley or the like, ensure it is within the range of allowable shaft load (see page A-47).

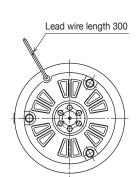
ZKB-XN powder brake

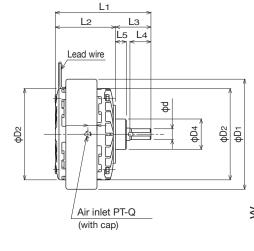
Rated torque: 12 to 50 (N⋅m)

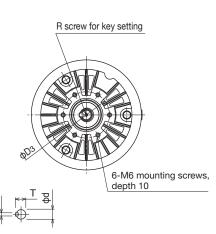
Natural cooling/forced air cooling protruding shaft type Available from 5 r/min

The heat capacity is increased by blowing air into the air gap.

Specifications

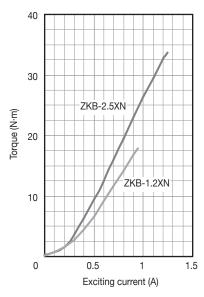



(Rated voltage: 24 V DC)

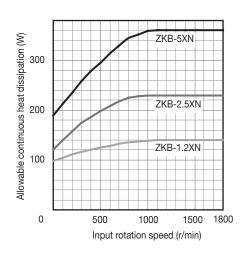

											• ,
Model name	Rated		Coil (75°C)		Moment of inertia		ooling allowabl lissipation (slip		Allowable	Maight (kg)	Powder
	torque (N·m)	Current (A)	Power (W)	Time con- stant (s)	J (kgm²)	Wind pres- sure (Pa)	Air volume (m ³ /min)	Power (W)	speed (r/min)	Weight (kg)	weight (g)
ZKB-1.2XN	12	0.94	22.5	0.10	1.34×10 ⁻³	3×104	0.2	250	1800	5.2	20
ZKB-2.5XN	25	1.24	30	0.12	3.80×10 ⁻³	5×104	0.4	380	1800	9	33
ZKB-5XN	50	2.15	51.5	0.13	9.50×10 ⁻³	1×10 ⁵	0.6	700	1800	14.5	60

Notes: 1. *: For the cooling air, be sure to use clean dry air passed through an air filter (complete oil removal type). 2. The idling torque is 1% or less of the rated torque.

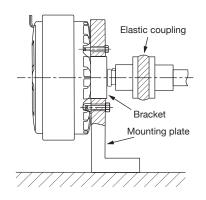
Outline dimensions (mm)

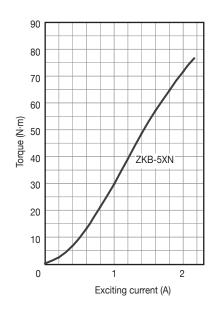

Key part dimensions

(Paint color Munsell 10Y 7.5/1)

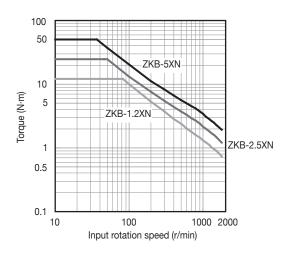

Model name	1.4				Le	Dr	D2	Do	$D_{4}(\alpha 7)$	0	F	3		Key part	
woder name		L2	L3	L4	L5	D1	D2	D3	D4 (g7)	Q	Diameter	Depth	d (h7)	W (p7)	T (⁰ -0.2)
ZKB-1.2XN	132	83	49	29	15	152	126	64	42	1/8	M4	8	15	5	17
ZKB-2.5XN	155	91	64	43	17	182	160	78	55	1/8	M5	10	20	5	22
ZKB-5XN	193	102	91	55	30	219	196	100	74	1/4	M6	12	25	7	28

Characteristics


• Standard torque characteristics (typical example)



 Allowable continuous heat dissipation characteristics (at natural cooling)



Mounting example

 Allowable continuous slip torque characteristics (at natural cooling)

- (1) Fasten the fitting part of the bracket to the mounting plate and fix it.
- (2) Always use an elastic coupling to connect the brake shaft and load shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling to be used.
- (3) When mounting a pulley or the like, ensure it is within the range of allowable shaft load (see page A-47).

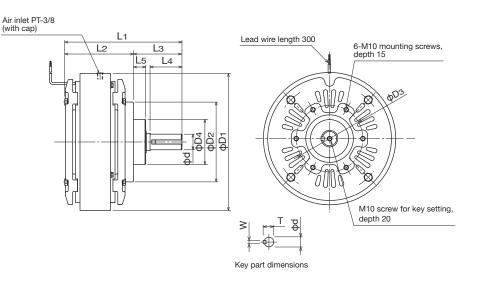
ZKB-XN powder brake

Rated torque: 100 to 200 (N·m)

Natural cooling/forced air cooling protruding shaft type Available from 5 r/min

The heat capacity is increased by blowing air into the air gap.

Specifications

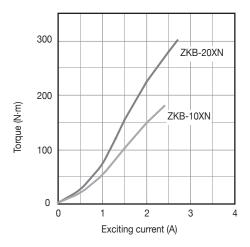


(Rated voltage: 24 V DC) Forced air cooling allowable continuous Coil (75°C) Allowable heat dissipation (slip rate)* Rated torque Moment of Powder Model name Weight (kg) rotational inertia J (kgm²) Wind pres-Air volume weight (g) (N·m) Time Current (A) Power (W) Power (W) speed (r/min) sure (Pa) constant (s) (m³/min) ZKB-10XN 100 2.4 57.6 0.25 3.50×10⁻² 6×104 1.1 1100 1800 34 140 ZKB-20XN 200 2.7 64.8 0.37 9.15×10⁻² 5×104 1.6 1900 1800 53 225

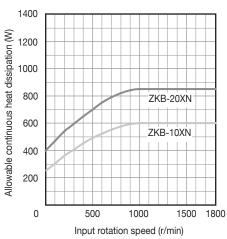
Notes: 1.*: For the cooling air, be sure to use clean dry air passed through an air filter (complete oil removal type).

2. The idling torque is 1% or less of the rated torque.

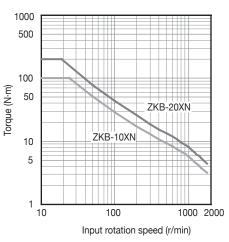
Outline dimensions (mm)

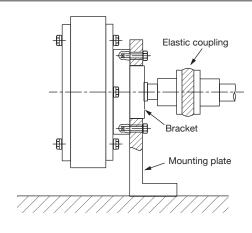

1	Paint	color	Munsell	10V	7 5/1
	гани	COIOI	IVIUIISEII	101	1.0/1

Model name					1 c	Dr	Do	De	$D_{4}(\pi 7)$		Key part	
	L1	L2	L3	L4	L5	D1	D2	D3	D4 (g7)	d (h7)	W (p7)	T (⁰ -0.2)
ZKB-10XN	239	139	100	65	28	278	160	140	100	30	7	33
ZKB-20XN	278	169	109	69	30	327	174	150	110	35	10	38.5


Tension Controller

Characteristics


Standard torque characteristics (typical example)


 Allowable continuous heat dissipation characteristics (at natural cooling)

 Allowable continuous slip torque characteristics (at natural cooling)

Mounting example

- (1) Fasten the fitting part of the bracket to the mounting plate and fix it.
- (2) Always use an elastic coupling to connect the brake shaft and load shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling to be used.
- (3) When mounting a pulley or the like, ensure it is within the range of allowable shaft load (see page A-47).

ZKB-HBN powder brake

Thermoblock cooling

Rated torque: 25 to 200 (N·m) Thermoblock cooling protruding shaft type Heat capacity increased by fixing a thermoblock for a driven member and by including an axial flow fan Available from 5 r/min

Specifications

Notes: 1. The idling torque is 1% or less of the rated torque.

the numerical values per axial flow fan.

2. The axial flow fan specifications of ZKB-20HBN show

|--|--|

(Rated voltage: 24 V DC)

	Rated		Coil (75°C))	Managet of in an	Allowable	\A/= : !=+	Powder			Axial flow fa	an		
Model name	torque	Current	Power (W)	Time	Moment of iner- tia J (kgm ²)	rotational	Weight (kg)	weight	Voltage	Power cons	umption (W)	Curre	ent (A)	Quantity
	(N·m)	(A)		constant (s)	liab (kgili)	speed (r/min)	(rg)	(g)	AC (V)	50 Hz	60 Hz	50 Hz	60 Hz	Quantity
ZKB-2.5HBN	25	1.24	29.8	0.12	3.80×10 ⁻³	1800	11	33	200	43	40	0.29	0.25	1
ZKB-5HBN	50	2.15	51.5	0.13	9.60×10 ⁻³	1800	16.5	65	200	43	40	0.29	0.25	1
ZKB-10HBN	100	2.4	57.6	0.25	3.50×10 ⁻²	1800	37	125	200	43	40	0.29	0.25	1
ZKB-20HBN	200	2.7	64.8	0.37	9.15×10 ⁻²	1800	59	205	200	43	40	0.29	0.25	2

• Thermal switch specifications

Operation temperature	100°C				
Contact allowable rating	120 V AC 5A/240 V AC 3A (resistive load)				
Contact	Normally closed contact				

Note: The operation temperature is set as an ambient temperature of 30°C.

Outline dimensions (mm) Lead wire display L1 ZKB-2.5, 5HBN correspondence table L3 L6 L5 L4 Lead R screw for key setting Mark wire Lead wire length 200 color 6-M10 mounting screws, Axial flow fan 200 Gray depth 10 þφ Thermal switch Т Blue Thermal switch ¢D4 ¢D2 ¢D1 Powder brake BR Black € Key part dimensions ZKB-10, 20HBN L1 L3 Thermal L5 L4 _L6_ switch 6-M10 mounting screws, R screw for key setting depth 15 Lead wire length 200 each ф 0² Kev part dimensions

(Paint color Munsell 10Y 7.5/1)

Model name	1.4			14	Le		D	D2 D3		Do Do	D2 D3 D4 (g7)		F	R		Key part		
woder name	L1	L2	L3 L4 L5 L6 D1 D2 D	D3	D4 (g7)	Diameter	Depth	d (h7)	W (p7)	T (⁰ -0.2)								
ZKB-2.5HBN	227	163	64	43	17	62	182	160	78	55	M5	10	20	5	22			
ZKB-5HBN	265	174	91	55	30	62	219	196	100	74	M6	12	25	7	28			
ZKB-10HBN	326	226	100	65	28	62	278	160	140	100	M10	20	30	7	33			
ZKB-20HBN	366	257	109	69	30	62	327	174	150	110	M10	20	35	10	38.5			

Tension Controller

Tension Controller

Common Item

3

1000 2000

(1) Fasten the fitting part of the bracket to the mounting plate and fix it.

(2) Always use an elastic coupling to connect the brake shaft and load shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling to be used.

100

Input rotation speed (r/min)

- (3) When mounting a pulley or the like, ensure it is within the range of allowable shaft load (see page A-47).
- (4) Provide space (30 mm or more) near the brake so as not to block the cooling wind.
- (5) If the axial flow fan is stopped or the cover is clogged, the inside of the brake may

become hot and cause burnout. For this reason, be sure to connect the thermal switch to provide a protection circuit. (6) Since the brake is the open type, when using it in a place with a lot of dust, arrange a

duct to convey clean air.

Connection diagram of the ZKB-HBN powder brake

Control unit

(24 V DC)

Overheating protection device (for input into a PLC, etc.)

400

300

200

100

0

0

1000

500

100

10

5

1

10

Torque (N-m) 50 ZKB-20HBN

1

ZKB-20HBN

ZKB-10HBN

ZKB-5HBN

ZKB-2.5HBN

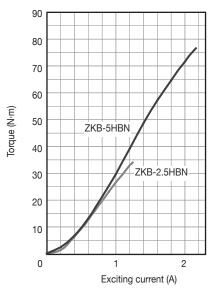
Exciting current (A)

Allowable continuous slip torque characteristics

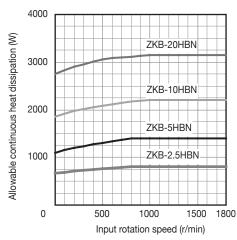
ZKB-10HBN

2

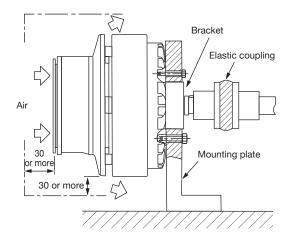
Torque (N·m)


Power supply

(200 V AC)


Axial flow fan

Characteristics


• Standard torque characteristics (typical example)

Allowable continuous heat dissipation characteristics

Mounting example

00000

Powder brake

ZA-Y powder brake

Rated torque: 6 to 50 (N·m) Natural cooling through-shaft type Available from 15 r/min Heat capacity increased by rotating the periphery to improve heat dissipation

Specifications

Model name

ZA-0.6Y

ZA-1.2Y1

ZA-2.5Y1

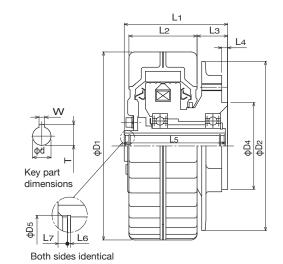
ZA-5Y1

(Rated voltage: 24 V DC)

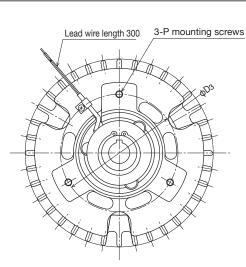
60

Coil (75°C) Allowable Moment of inertia J (kgm²) Rated torque (N·m) Powder weight (g) rotational speed Weight (kg) Power (W) Time constant (s) Current (A) (r/min) 0.3 7.2 0.10 1.55×10-3 1800 15 6 2.4 5.50×10-3 12 0.39 9.4 0.13 1800 5 25 0.73 17.5 0.15 9.40×10-3 7.4 39 25 1800

2.30×10⁻²


0.17

Note: The idling torque of ZA-0.6Y is 5% or less of the rated torque and that of ZA-1.2Y1 and others is 3% or less of the rated torque.

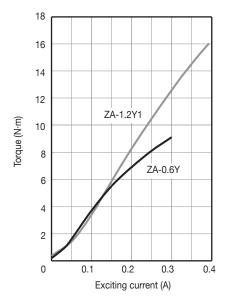

22.6

Outline dimensions (mm)

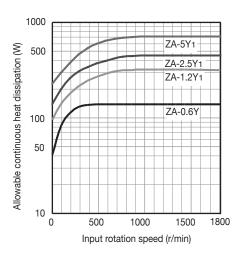
50

0.94

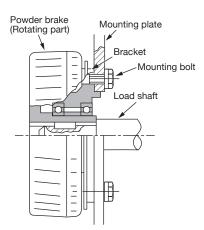
1800

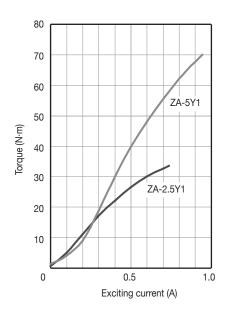

11

Madal name					1.5		1 -	Dr	Do	Do	D4	Dr	F)		Key part	
Model name	L1	L2	L3	L4	L5	L6		D1	D2	D3	(g7)	D5	Diameter	Depth	d (H7)	W (F8)	T (^{+0.2})
ZA-0.6Y	68	53	15	2	64	1.1	3	116	116	80	70	12.5	M5	12	12	4	13.5
ZA-1.2Y1	88	58	26	5	86	1.1	4	160	144	100	74	19	M6	17	18	5	20
ZA-2.5Y1	100	66	28	5	92	1.1	4	180	170	140	100	21	M10	19	20	5	22
ZA-5Y1	106	74	27	5	101	1.3	5	220	195	150	110	31.4	M10	19	30	7	33

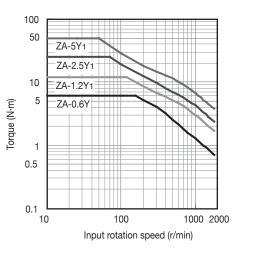

Tension Controller

Characteristics


• Standard torque characteristics (typical example)



 Allowable continuous heat dissipation characteristics (at natural cooling)



Mounting example

• Allowable continuous slip torque characteristics (at natural cooling)

Fasten the fitting part of the bracket to the mounting plate and fix it.
 Be careful of the length of the mounting bolt. If the mounting bolt is too long, the tip of

the bolt may interfere with the rotating part.								
Model name	Screw holes	Overlapping allowance of the mounting bolt (mm)						
ZA-0.6Y	3-M5 × 12	8-11						
ZA-1.2Y1	3-M6 × 17	9-16						
ZA-2.5Y1	3-M10 × 19	15-18						
ZA-5Y1	3-M10 × 19	15-18						

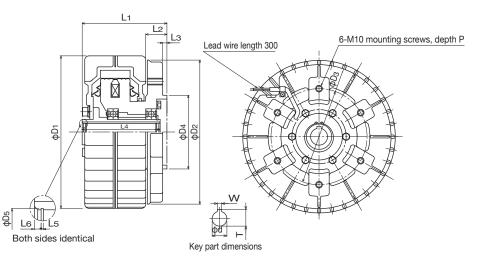
(3) Set the concentricity between the brake side threading shaft and the load shaft to 0.05 mm or less.

(4) Since the outer periphery rotates, be sure to cover the whole body with a wire mesh or the like with good ventilation. Tension Detector

ZA-Y powder brake

Natural cooling type

Rated torque: 100 to 200 (N·m) Natural cooling through-shaft type Available from 15 r/min Heat capacity increased by rotating the periphery to improve heat dissipation

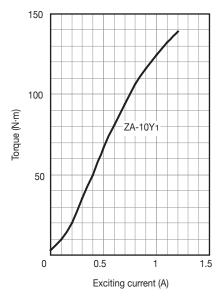

Specifications

|--|

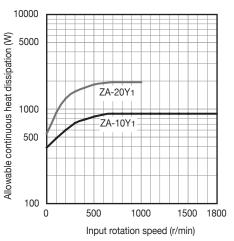
(Rated voltage: 24 V DC) Coil (75°C) Allowable Powder weight (g) Moment of inertia J (kgm²) Rated torque (N·m) Model name Weight (kg) rotational speed Power (W) Time constant (s) Current (A) (r/min) ZA-10Y1 100 1.21 28.8 0.3 6.60×10⁻² 1800 22 105 0.6 2.00×10-1 1000 40 ZA-20Y1 200 1.9 45.6 235

Note: The idling torque is 3% or less of the rated torque.

Outline dimensions (mm)

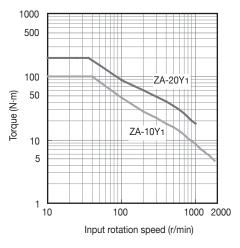


Model name					Le		Dr		D3	2 D3	D2 D3		Da D4	D5	Р		Key part	
wodername	L1	L2	L3	L4	L5	L6	D1	D2	D3	(g7)	D5	Depth	d (H7)	W (F8)	T (^{+0.2})			
ZA-10Y1	140	29	5	130	1.65	5	275	250	150	110	37	22	35	10	38.5			
ZA-20Y1	160	42	6	152	-	-	335	320	240	160	-	30	45	12	49			

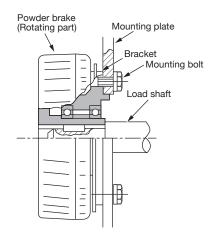

Common Item

Characteristics

Standard torque characteristics (typical example)



Allowable continuous heat dissipation characteristics



300 200 200 100 0 1 Exciting current (A)

Allowable continuous slip torque characteristics

Mounting example

- (1) Fasten the fitting part of the bracket to the mounting plate and fix it.
- (2) Be careful of the length of the mounting bolt. If the mounting bolt is too long, the tip of the bolt may interfere with the rotating part.

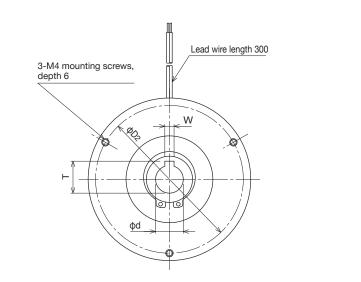
Model name	Screw holes	overlapping allowance of the mounting bolt (mm)
ZA-10Y1	6-M10 × 22	15-21
ZA-20Y1	6-M10 × 30	15-29

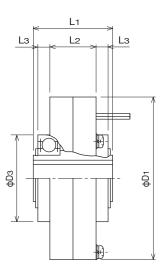
- (3) Set the concentricity between the brake side threading shaft and the load shaft to 0.05 mm or less.
- (4) Since the outer periphery rotates, be sure to cover the whole body with a wire mesh or the like with good ventilation.

ZX-YN powder brake

Natural cooling type

Rated torque: 3 to 12 (N·m) Natural cooling through-shaft type Ultra-thin type Available from 5 r/min

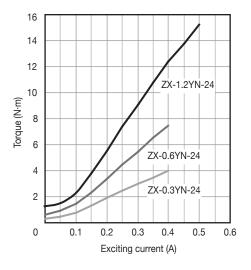



Specifications

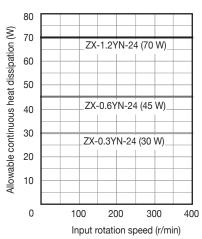
	Rated torque		Coil	(75°C)		Moment of inertia J	Allowable		
Model name	(N·m)	Voltage (V)	Current (A)	Power (W)	Time constant (s)	(kgm ²)	rotational speed (r/min)	Weight (kg)	
ZX-0.3YN-24	3	24	0.4	9.6	0.035	3.5×10⁻⁵		1.1	
ZX-0.6YN-24	6	24	0.4	9.6	0.050	9.0×10 ⁻⁵	400	1.8	
ZX-1.2YN-24	12	24	0.5	12	0.070	1.6×10 ⁻⁴		2.3	

Note: The idling torque is 10% or less of the rated torque.

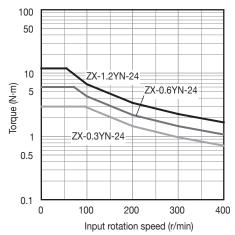
Outline dimensions (mm)

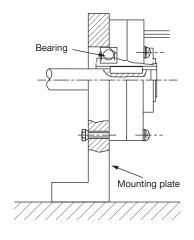

(Paint color Munsell 10Y 7.5/1)

Madal name				Dr	D2			Key part	
Model name	LI	L2	L3	D1	D2	D3 (h5)	d (H7)	W (Js9)	T (^{+0.2})
ZX-0.3YN-24	43	25	6.5	88	80	47	15	5	17.3
ZX-0.6YN-24	49	30	6.5	105	97	55	20	6	22.8
ZX-1.2YN-24	50	30	7	118	110	62	25	8	28.3


Tension Controller

Characteristics


Standard torque characteristics (typical example)


Allowable continuous heat dissipation characteristics

• Allowable continuous slip torque characteristics

Mounting example

- (1) Fasten the fitting part of the bearings to the mounting plate and fix it.
- (2) Always use an elastic coupling to connect the brake-side threading shaft and load shaft, and set the concentricity, perpendicularity, etc. of the shafts at this time within the allowable value of the elastic coupling to be used.
- (3) When supporting the load shaft with built-in bearings, be careful not to implement 3-point support. (The brake has 2 built-in bearings.)

Selection

When used in continuous slip condition

Normally, the powder clutch/brake are used in the continuous slip condition. The heat dissipation P (heat generation due to slip) in this case is expressed by the following equation.

$$\begin{split} P = 0.105 \times T \times Nr~(W) \cdots \cdots \cdots \cdots \cdots (1) \\ \text{where,} \\ Nr: Slip rotation speed (r/min) \end{split}$$

T: Transmission torque (N·m)

Select the model of the clutch/brake so that the heat dissipation obtained by equation (1) is within the allowable continuous heat dissipation. If the allowable continuous heat dissipation is insufficient with natural cooling, forced cooling is required. When the clutch/brake is used in continuous slip, the size of the clutch/brake is often determined by the heat dissipation, and the operating torque may be very small compared to the rated torque of the clutch/brake. In such a case, appropriate selection can be performed by using a proper deceleration device and changing the operating torque to the range where it can be easily controlled.

Selection of powder clutch/brake for tension control

1. Machine specifications and selection calculation

Fig. 1 on page A-38 shows the flow chart for selecting the powder clutch/brake capacity when using it as a typical usage example for tension control.

When selecting a model, it is necessary to consider the 3 points of (1) torque, (2) rotational speed, and (3) heat dissipation (heat generation due to slip). These points are calculated from the machine specifications (tension, line speed, and reel diameter or roll diameter) by the following formula.

(1) Torque $T = F \times \frac{D}{2} (N \cdot m) \cdots (2)$

(2) Rotation speed Nr = $\frac{V}{\pi \times D}$ (r/min)(3)

(3) Heat dissipation $P = 0.105 \times T \times Nr$ (W).....(4)

where,

F: Tension (N)

D: Raw web reel diameter or roll diameter (m)

V: Line speed (m/min)

Nr: Slip rotation speed (r/min) of powder clutch/brake

(This is the slip difference between the input and the output rotation speeds for the powder clutch, and the input rotation speed for the powder brake.)

Based on these calculation results, select the powder clutch/brake according to the flow shown in Fig. 1 on page A-38.

2. Points of selection and points to be noted

(1) Torque

Calculate the maximum and minimum values of torque and check whether they are within the controllable range. The torque controllable range of the powder clutch/brake is from the rated torque to the range of the idling torque of the product. (Because there is a torque loss of the bearing and seal inside the product, even if the exciting current is set to 0 A, the torque does not become 0 N·m. This idling torque, which is usually approx. 2% of the rated torque, depends on the product, so refer to the specification column of each model for actual selection.) The controllable range is from idling torque to 100% of the rated torque, but using it within the range as close to the rated torque as possible can obtain better controllability. In particular, when the control unit uses an open-loop system such as a reel diameter detection type or a manual type, it is recommended to use it in a range of 5 to 100%, which excels in linearity of the exciting current-torque characteristics.

(2) Rotation speed

Both the powder clutch/brake must have a maximum rotation speed less than the allowable rotation speed. Also, the powder brake must have a minimum rotation speed of 15 r/min or more, and the powder clutch must have a rotation speed difference of 15 r/min or more between the input and output (that is, both the powder clutch/brake also require a slip rotation speed of 15 r/min or more).

If the rotation speed is low and a sufficient slip rotation speed cannot be secured for unwinding of a machine with a slow line speed, use a powder clutch rather than a powder brake and secure slip rotation speeds by applying rotation in the direction opposite to the direction of rotation of the unwinding reel using a geared motor or the like. (ZKB-N series, ZKG-N series, and ZX-YN series can be used from 5 r/min or more.)

Fension Controlle

Tension Detector

Common Item

(3) Heat dissipation (heat generation)

The heating value per unit time generated when the powder clutch/brake slips is called heat dissipation. In tension control, the powder clutch/ brake is used in the continuous slip state and therefore the temperature of the powder clutch/brake body is increased by the slip heat. The heat dissipation (heat generation) during operation needs to be suppressed below the allowable continuous heat dissipation of the operating model.

3. When an unwinding powder brake is used

Assuming that the gear ratio of the unwinding reel and brake shaft is 1 (direct connection),

Slip rotation speed = rotation speed of unwinding reel

Therefore, the formula for calculating the heat dissipation (heat generation) is as follows:

The heat dissipation (heat generation) is determined by the machine tension and line speed and is not affected by the reel diameter.

4. When a winding powder clutch is used

Assuming that the gear ratio of the winding reel and clutch shaft is 1 (direct connection),

Slip rotation speed = powder clutch input rotation speed - rotation speed of winding reel

Normally, the input rotation speed of the powder clutch is set to a constant rotation speed of 15 r/min or more than the maximum rotation speed of the winding reel. The heat dissipation (heat generation) is also changed by the change of the reel diameter (rotation speed of the winding reel). So, the maximum heat dissipation during operation is calculated by the following formula.

 $Pmax = 0.105 \times Tmax \times Nrmax = 0.105 \times Tmax \times (Ni - Nmin) \cdots (6)$

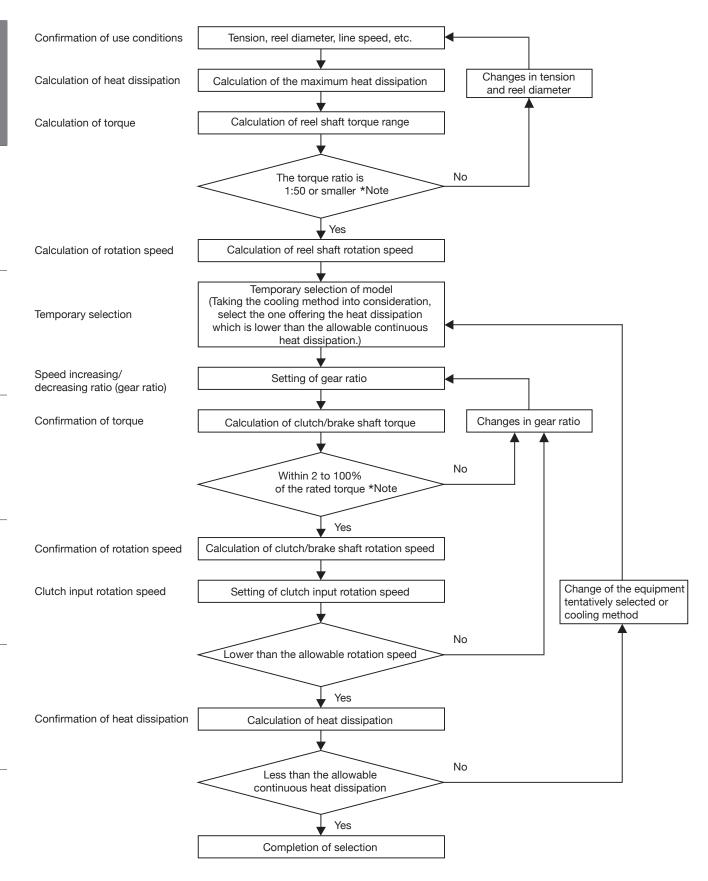
where,

Pmax: Maximum heat dissipation (W)

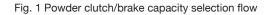
Tmax: Maximum torque (N·m)

Nrmax: Maximum slip rotation speed (r/min)

Ni: Clutch input rotational speed (r/min)


Nmin: Minimum rotational speed (r/min)

The torque and slip rotation speed become maximum at the end of winding, and the heat dissipation (heat generation) at this time becomes the maximum.


(Note: In the taper tension control, the tension at the end of winding may decrease greatly compared with the tension at the start of winding. In this case, the heat dissipation may become maximum during winding, not at the end of winding.)

Introduction of selection tool

For the selection tool, consult your local Mitsubishi Electric representative.

* Note: The allowable torque control range varies depending on the model. Please see the specifications section of each model for details.

Common Item

Sample calculation

Winding or unwinding is performed in 2 modes, one is constant tension winding to wind up with constant tension, and the other is taper tension winding to wind up strongly at first and gently at the end. These modes can be realized by using the torque controllability or constant torque characteristics of the powder clutch/brake.

There are 3 ways to realize them: unwinding side brake, idling roll clutch/brake, and winding side clutch.

The torque controllable range is from idling torque to rated torque. Since the idling torque depends on the model, refer to the specifications of each model.

1. Unwinding powder brake (1)

What kind of powder brake should be used as the unwinding side brake with the film winding machine with the following specifications?

(1) Specifications

Tension	F: 100 N constant
Unwinding roll diameter	Maximum diameter D1: 660 mm
	Minimum diameter D2: 110 mm
Line speed	V: 170 m/min constant

(2) Calculation

(1) Torque

Suppose the brake torques required at the beginning and end of unwinding at tension 100 N are T1 and T2.

$$T_1 = \frac{D_1}{2} \times F = \frac{-660 \times 10^{-3}}{2} \times 100 = 33 \text{ N/m}$$
$$T_2 = \frac{D_2}{2} \times F = \frac{-110 \times 10^{-3}}{2} \times 100 = 5.5 \text{ N/m}$$

(2) Rotation speed

Suppose the slip rotation speeds of the brake at the beginning and end of unwinding at a line speed of 170 m/ min are N1 and N2.

N1 =
$$\frac{V}{\pi D_1}$$
 = $\frac{170}{\pi \times 660 \times 10^{-3}}$ = 82 r/min

N2 =
$$\frac{V}{\pi D2}$$
 = $\frac{170}{\pi \times 110 \times 10^{-3}}$ = 492 r/min

2. Unwinding powder brake (2)

Next is an example of changing the gear ratio according to the tension when the torque control range is wide.

(1) Specifications

Tension	F: 130 to 520 N
Unwinding roll diameter	D: 100 to 900 mm
Line speed	V: 100 m/min constant
Manual control	

(2) Calculation

 As in the previous example, calculate the torque (T), rotation speed (N), and heat dissipation (P) of the unwinding reel.

T =
$$\frac{D}{2} \times F = \frac{(0.1 \text{ to } 0.9)}{2} \times (130 \text{ to } 520)$$

= 6.5 to 234 N·m

$$N = \frac{V}{\pi D} = \frac{100}{\pi \times (0.1 \text{ to } 0.9)}$$

= 35.4 to 318 r/min

$$P = 0.0167 \times F \times V = 0.0167 \times 520 \times 100$$

= 869 W (Max.)

Based on the above calculations, the ZKB-10HBN (thermoblock type) is used.

(3) Heat dissipation Heat dissipation P is:

$$P = 0.105 \times T \times Nr = 0.105 \times \frac{DF}{2} \times \frac{V}{\pi D}$$
$$= 0.0167 \times F \times V = 0.0167 \times 100 \times 170$$

As shown above, the continuous heat dissipation of the unwinding side brake at constant line speed and constant tension becomes constant.

(4) Selection

In view of the torque (T1, T2) and heat dissipation (P), the ZA-5Y1 (allowable continuous heat dissipation approx. 290 W at rated torque 50 N·m and input rotation speed 82 r/min) can be used with natural cooling.

The unwinding reel and brake shaft are directly connected, and the torque usage range is 66 to 11% of the rating.

Reference:

The allowable continuous heat dissipation of natural cooling varies depending on the rotation speed of the brake, so decide whether to use one while the brake is at low rotation (N1) when the allowable continuous heat dissipation becomes small.

(2) Here, suppose the torque of 234 N·m is 100%, the torque obtained above is 2.8% with 6.5 N·m, and it is out of the control range (5 to 100%) in manual control. Therefore, it is necessary to change the gear ratio according to the tension and set it to the appropriate torque range.

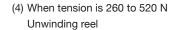
The branch value (Fm) of tension is determined by the following formula.

$$Fm = \sqrt{Tension ratio} \times Fmin$$

$$=\sqrt{\frac{520}{130}} \times 130 = 260 \text{ N}$$

(3) When tension is 130 to 260 N Unwinding reel

Tbo =
$$\frac{(0.1 \text{ to } 0.9)}{2} \times (130 \text{ to } 260)$$

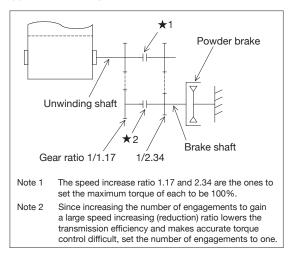

$$= 6.5 \text{ to } 117 \text{ N} \cdot \text{m}$$

$$Nbo = N = 35.4$$
 to 318 r/min
Brake shaft (1.17 times increase in speed)

Tbr = Tbo
$$\times \frac{1}{1.17}$$
 = 5.6 to 100 N·m

(5.6 to 100%)

Nbr = Nbo × 1.17 = 41.4 to 372 r/min P = $0.0167 \times F \times V = 434$ W (Max.)

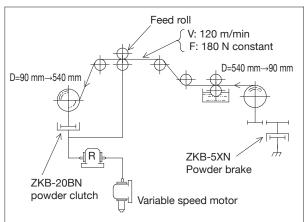


Tbo = 13 to 234 N·m Nbo = 35.4 to 318 r/min

Brake shaft (2.34 times increase in speed)

Tbr = 5.6 to 100 N·m Nbr = 82.8 to 744 r/min P = 869 W (maximum)

(5) Structure example



3. Winding side powder clutch

(1) Specifications

Tension	F: 180 N constant
Winding roll diameter	Minimum diameter D1: 90 mm
	Maximum diameter D2: 540 mm
Line speed	V: 120 m/min

Line speed

(2) Calculation

(1) Torque

Suppose the clutch torques required at the beginning and end of winding at tension 180 N are T1 and T2.

$$T_1 = \frac{D_1}{2} \times F = \frac{90 \times 10^{-3}}{2} \times 180 = 8.1 \text{ N} \cdot \text{m}$$
$$T_2 = \frac{D_2}{2} \times F = \frac{540 \times 10^{-3}}{2} \times 180 = 48.6 \text{ N} \cdot \text{m}$$

 \star 1 and \star 2 are electromagnetic clutches etc., When F = 130 to 260 N

★1: OFF ★2: ON→Gear ratio becomes 1.17

When F = 260 to 520 N

★1: OFF ★2: ON→Gear ratio becomes
$$\frac{1}{2.24}$$

(2) Rotation speed

Suppose the rotation speeds at the beginning and end of winding at a line speed of 120 m/min are N1 and N2 (N1 and N2 are the rotation speeds of the winding reel, not the slip rotation speeds).

$$N_{1} = \frac{V}{\pi D_{1}} = \frac{120}{\pi \times 90 \times 10^{-3}} = 425 \text{ r/min}$$
$$N_{2} = \frac{V}{\pi D_{2}} = \frac{120}{\pi \times 540 \times 10^{-3}} = 71 \text{ r/min}$$

(3) Heat dissipation

If the input rotation speed No of the clutch is made higher by 15 r/min* than the rotation speed N1 necessary at the beginning of winding of the winding reel, the heat dissipation P1 and P2 of the clutch at the beginning and end of winding are as follows:

$$P1 = 0.105 \times (440 - 425) \times 8.1 = 12.8 W$$

$$P2 = 0.105 \times (440 - 71) \times 48.6 = 1883 W$$

As shown, when it is used as a winding clutch with constant tension, both the slip rotation speed and winding torque become maximum at the end of winding. Thus the heat dissipation also becomes maximum at the end of winding, and therefore the heat capacity of the clutch must be determined in the final state of winding. Based on the above calculation results, the model name is selected as follows.

Forced air cooling type:

ZKB-20BN (rated torque 200 N·m, allowable continuous heat dissipation 1900 W) can be used. However, if it is directly connected to the winding reel, torque will be 5% or less of the rated torque at the beginning of winding, so use automatic control.

Examination of the unwinding side turns out as follows:

 $\begin{cases} N_1 = 425 \text{ r/min} \\ N_2 = 71 \text{ r/min} \end{cases} \begin{cases} T_1 = 8.1 \text{ N·m} \\ T_2 = 48.6 \text{ N·m} \end{cases}$

This is the same as the winding side. Heat dissipation P is:

 $P=0.105\times T_1\times N_1=0.105\times T_2\times N_2$

 $= 0.0167 \times F \times V = 361 W$

The above results show the following:

Forced air cooling type:

ZKB-5XN (rated torque 50 N·m, allowable continuous heat dissipation 700 W) can be used.

As is clear from the above calculation results, the torque operating ranges and the slip rotation speeds are not much different between the winding clutch and the unwinding brake, but the heat dissipations are significantly different. Note that, for this reason, the selected model will change. The heat dissipation on the unwinding side is constant regardless of the winding ratio (the ratio of the minimum diameter to the maximum diameter), but on the winding side the heat dissipation increases substantially in proportion to the winding ratio.

 The clutch input rotation speed No was increased by 15 r/min, but normally it should be approx. 10% higher. For the brake on the unwinding side in this example, ZA-5Y1 blower cooling, or ZKB-5HBN can be used.

4. Powder clutch for driving pinch roll

(1) Specifications

Tension F: 100 to 350 N

Roll diameter D: 200 mm

Line speed V: 45 to 90 m/min

When the decorative sheet is bonded to the plywood, the pinch roll B, with respect to the feed roll A, has a difference in circumferential speed due to a change in the rubber roll diameter by the pinch pressure conduction. To prevent the peripheral speed difference from causing roll B to slip, a powder clutch is put into the drive system of roll B to let the slipping occur in the clutch.

(2) Calculation

(1) Rotation speed of roll B

N =
$$\frac{V}{\pi D} = \frac{45 \text{ to } 90}{\pi \times 200 \times 10^{-3}} = 72 \text{ to } 144 \text{ r/min}$$

(2) Roll driving torque

$$T = \frac{D}{2} \times F = \frac{200 \times 10^{-3}}{2} \times (100 \text{ to } 350)$$

= 10 to 35 N•m

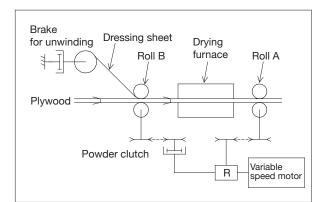
(3) Heat dissipation

When the input rotation speed of the clutch is decided so that the slip rotation speed becomes 15 r/min when the line speed is 45 m/min, the maximum heat dissipation is as follows.

The input rotation speed No of the clutch at 90 m/min is:

No =
$$144 \times \left(\frac{72+15}{72}\right) = 144 \times 1.2 = 173 \text{ r/min}$$

Therefore, the heat dissipation is:


 $P = 0.105 \times (173 - 144) \times 35 = 107 W$

Based on the above calculation results, use ZKB-2.5BN (rated torque 25 N·m, heat dissipation 160 W at 200 r/min) where the speed has been doubled from the roll B shaft. In this case, the operating range of the torque becomes 5 to 17.5 N·m, and the input rotational speed N'o of the clutch will be enough if it is:

N'0 = 288 ×
$$\left(\frac{144 + 15}{144}\right) \doteq 318$$
 r/min

The heat dissipation at this time is:

$$P = 0.105 \times (318 - 288) \times 17.5 = 55 W$$

Tension Controller

Clutch.

- Powder clutch/brake specification contact sheet
- For unwinding/winding (Note) Circle either one.

Customer name	Machine name	Delivery	Quantity
Configuration			
Unwinding		7 B 9 Winding Tension detector M motor	(Participation of the second
d2 Gear Reduct d1	ratio: R=d1/d2 ction gear efficiency: η er brake	Flange Gear ratio:	Powder clutch
	Unwinding roll Winding widt		
Please fill the items inc	dicated with * without fail.		
Operational * tension	Minimum Fmin <u>N</u>	Maximum Fmax =	<u>N</u>
Reel diameter *	Minimum Dmin <u> </u>	Maximum Dmax =	<u> </u>
Line speed *	Minimum Vmin <u> </u>	Maximum Vmax =	<u>m/min</u>
Acceleration/ deceleration time	Maximum tmin $=$ sec $(0 \rightarrow V)$	√max, Vmax→0)	
Reel mass		kg Winding width Lm = kg	<u>mm</u>
Operation cycle	Time required to complete one roll	min Interval	min
Material	Type Width T	hickness <u>μm</u>	
Environmental condition	Temperature <u>°C</u> Humidity	% Vibration <u>m/s²</u>	
Forced cooling method	Air source Yes/No		
Type of control	(A) Manual (B) Open-loop control	(C) Feedback control	
Type of control	(A) Constant tension (B) Taper ratio	(Minimum:)% (Maximum:)%
Turret	(A) Yes (B) No		
Auto paster	(A) Yes (B) No		
Reel diameter detector	(A) Required (B) Not required (For e	external taper control)	

Note 1. Attach a power system diagram if one is available.

Note 2. If the inertia of the driven roll has a large effect, enter the weight in the blank.

Powder Clutch/Br

Common Item

Powder clutch/brake specification contact sheet

• For intermediate shaft

Customer name	Machine	Delivery	Quantity
Configuration			
In-fe		Feed roll Feed roll Tension de	Main shaft roll tector
			M
Winding or unwinding	Powder brake	d ₃	Main shaft motor shaft motor
Please fill the items	indicated with * without fail.		
Operational tension *	Inside F1min= On the side of roll (6) for Outside F2min= On the side of roll (5) for		
Feed roll *	Feed roll diameter Do	m	
Line speed *	Minimum Vmin =n	<u>ı/min</u> Maximum Vmax	=m/min
Acceleration/ deceleration time	Minimum tmin =	sec $(0 \rightarrow V \max, V \max \rightarrow 0)$)
Mass of feed roll	Wd = <u>kg</u>		
Operation cycle	Time required to complete on	e reel <u>min</u> Int	erval <u>min</u>
Material	Type Width	mm Thickness	μm
Environmental condition	Temperature <u>°C</u> Hur	nidity <u>%</u> Vibration	<u>m/s²</u>
Forced cooling method	Air source Yes/No		
Type of control	(A) Manual (B) Open-loop c	ontrol (C) Feedback control	
Others	Set the efficiency of the reduction mechanical loss torque of each		the η =0.9 to 1 and consider the
the input rotation the main shaft rol tension, shall be the minimum ope than that of the constantly lower feeding side tens	a speed of clutch shall be set so Il when the clutch is fully engag applied to the clutch/brake, and erational rotation speed of the discharging side, no brake is re than that of the discharging sid ion and discharging side tension	o that the rotation speed o ed. In addition, the bias tor d the minimum slip rotation clutch. When the tension equired. On the contrary, e, no clutch is required. Ho on is small and the torque b	he basic specifications above. However, of the feed roll is 10% higher than that of rque, equivalent to 10% of the maximum in speed of the clutch shall be higher than on the feeding side is constantly higher when the tension on the feeding side is powever, when the difference between the based on the difference above is smaller brake shall be used in combination.

Note 1. Attach a power system diagram if one is available.

Note 2. If the inertia of the driven roll has a large effect, enter the weight in the blank.

Usage precautions

1. Safety Precautions

Carefully read the "Safety Precautions" at the back of the manual, pay attention to safety and use the product correctly.

2. General items

$\left(1\right)$ Do not attach the input shaft and the output shaft reversely.

For the powder clutch, the normal mounting method is to use the high-speed rotation side as the input side. (For the ZA type, the hollow shaft is on the output side, and for the ZKB type, the input/output shafts are indicated by the arrows on the external dimension drawing of this catalog and on the name plate.) Usage with the input and output mounted reversely in continuous idling is not recommended in view of the torque characteristics and powder life.

In addition, in principle, the clutch/brake should be used on the horizontal shaft; they cannot be used on the vertical shaft. When using them in the following conditions, contact us and state the conditions of use.

- (a) When used at an inclined angle
- (b) When the whole set revolves
- (c) In case of special specifications such as low-temperature specifications
- (2) Be careful of installation of pulley, coupling, and shaft. When fitting a pulley, coupling, or shaft to the product, be sure to use clearance fit and not to apply excessive force to the product. Applying impacts, etc. to the product may scratch the inside bearings and quickly cause damage.

(3) Be careful of wetness of the powder.

The performance becomes unstable if the powder becomes wet, so take great care not to allow water, oil etc. to enter inside. Especially, when installing the product close to the gearbox, oil may flow in through the shaft, so seal the shaft completely. In addition, the product is not hermetically sealed, so it cannot be used in environments where oil mist, oil, or water is directly applied.

(4) Be careful that the surface temperature does not exceed a limit temperature.

Control the maximum surface temperature by continuous operation under the conditions shown in the table below. Exceeding this value will greatly reduce the durability.

Limit of clutch/brake surface temperature (stator circumference)

Limit temperature (approximate)
100°C or lower
70°C or lower

However, the ambient temperature is based on 30°C. Consider the above limit temperature as a guide, and be sure to use the product within the allowable continuous heat dissipation.

(5) Be careful of the compressed air piping.

The powder clutch/brakes are not hermetically sealed. Especially with the ZA-A1 powder/clutch and ZA-Y1 powder brake, when compressed air flows into (passes thorough) the bearings, the air passes the powder gap in the product and may cause powder to leak outside. When the compressed air piping for the air chuck of the unwinding/winding reel is arranged so that it enters the penetration shaft of the powder clutch/brake, perform installation so as to prevent air leakage and make a device configuration that releases air in order to prevent air leakage from the joint.

3. Relationship between rated torque and rated current

(1) Torque significantly exceeds the rated torque when the rated current is applied at the time of shipment (break-in operation) (refer to the standard torque characteristics for each model). This is because the torque is set to be high in anticipation of aged deterioration of the powder. Use the product without exceeding the rated torque. (2) Torque reduction occurs due to aged deterioration, but it is possible to adjust the torque by increasing the current. However, use the product without exceeding the rated current.

4. Torque

- (1) For the current vs. torque characteristics, the standard values of new products at 200 r/min are listed. As the powder deteriorates over time, this standard characteristic will change. Correct the change in torque characteristics with current.
- (2) Torque can be easily controlled by current, but note that torque may become unstable, especially when using large models (torque of 100 N⋅m or more) at high-speed rotation and at low current.
- (3) Note that when ON/OFF control is performed at high-speed rotation, it may take a considerable amount of time to reach the predetermined torque.
- (4) Torque variation near the rated current is approx. ±10% for each product. The variation between products is approx. ±15% of the standard torque characteristic. Therefore, when clutches and brakes are operated in parallel, it is recommended to design so that current can be individually adjusted.
- (5) The torque value shows hysteresis. Therefore, please be aware that an increase or decrease of the current will cause a difference in torque.
- (6) The idling torque described in the specifications column of each product is a representative measured value. The idling torque will change, depending on the mounting method, driving conditions, driving time, etc. Since there is variation among individual products, be sure to select the appropriate model by making allowance for this.

5. Lifespan

- (1) When the product is used in continuous slip for winding or unwinding, the lifespan of the powder varies depending on the usage conditions (relative slip speed, etc.), but in general, when it is used at the allowable continuous heat dissipation, the life of the powder, where the torque drops to the rated torque at the rated current, is approx. 5000 to 8000 hours. However, if it is used at the rated torque or lower, it can be used continuously, so the life will be extended. However, even at the same heat dissipation, when the slip rotation speed, that is, the relative rotation speed, is continuously at a relatively high level, the life time tends to be short, so make settings so that the relative rotation speed is as low as possible.
- (2) Using the product with allowance for allowable continuous heat dissipation can extend the life of the powder. For example, if the product is used at 50% of the allowable continuous heat dissipation, the service life may be approx. twice or more.
- (3) The ZKG and ZX series do not allow powder replacement, so the product needs to be replaced if the powder life is reached.

6. When operating at low speed (15 r/min or less)

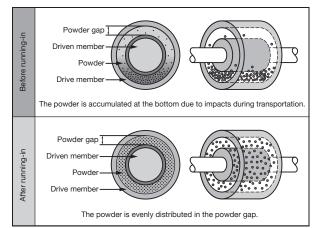
When using the product in continuous operation such as tension control, it shows stable torque characteristics, but in intermittent operation involving idle rotation, the rise of torque may be slightly delayed immediately after voltage application. To avoid this, use the product as follows.

- (1) Even after completion of unwinding, keep applying weak excitation (5 to 10% of rated current) so that the powder does not fall off from the working surface.
- (2) Increase the speed so that the minimum rotation speed becomes 15 r/min or higher. However, be aware that accurate torque control may not be possible due to mechanical loss, etc. of the speed increasing mechanism if the speed increasing rate is large.
- (3) The ZKB-N, ZKG, and ZX series can be used from approx. 5 r/min.

ension Controller

Amplifie

7. Precaution Be sure to perform break-in driving


(1) What is break-in driving?

Since the powder inside the powder clutch/brake is unevenly distributed due to shock during transportation, break-in operation must be performed before starting regular operation.

To obtain the intrinsic performance of the powder clutch/brake, it is important that the powder is evenly distributed within the powder gap.

If the powder is unevenly distributed, the torque may decrease, fluctuate, become fixed, etc., preventing the product from demonstrating its intrinsic performance.

Break-in can uniformly distribute the unevenly distributed powder within the powder gap and generate a stable torque proportional to the exciting current.

(2) Break-in driving procedure

This is an example of an effective way to break in if the regular break-in is difficult.

Note: In either case, be careful not to cause the surface temperature of the clutch/brake to exceed the limit shown in the instruction manual or catalog.

[Reference] Regular break-in condition

 In the case of a clutch, secure it to prevent the output shaft from rotating.

(This step is unnecessary when the load torque is large.)

- (2) Rotate the input shaft at approx. 200 r/min for approx. 1 minute.
- (3) While rotating, set the exciting current to 1/4 to 3/4 of the rated value and excite it approx. 10 times in the cycle of ON for 5 seconds and OFF for 10 seconds.

If the uneven distribution of the powder is large and it is difficult to carry out break-in, repeat approx. 10 times in the cycle of ON for 5 seconds and OFF for 10 seconds at the rated excitation.

1. When the rotation speed of the input shaft cannot be set to approx. 200 r/min

Set the exciting current ON time as follows. Calculate the time until the number of revolutions of the input shaft reaches approx. 20 times.

(Example) In the case of 30 r/min

60 seconds $\times \frac{1}{30 \text{ r/min}} \times 20 \text{ times} = 40 \text{ seconds}$

Therefore, turn ON for 40 seconds, turn OFF for 10 seconds, and repeat it approx. 10 times.

In some cases, it may be effective to repeat ON for 2 seconds and OFF for 0.5 second at the rated excitation.

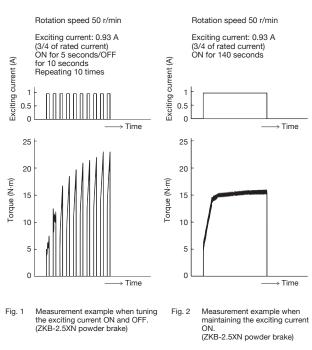
2. When the output shaft cannot be fixed in the case of a clutch

- Increase the load to make it as difficult as possible for the output shaft to rotate.
- (2) Set the exciting current to approx. 1/8 to 1/4 of the rating.
- (3) Set the ON time as follows. Calculate the time until the relative rotation of the input shaft and output shaft reaches approx. 20 times in total.

(Example) In the case of input shaft 300 r/min and output shaft 280 r/min

Relative rotation speed 300 - 280 = 20 r/min

60 seconds
$$\times \frac{1}{20 \text{ r/min}} \times 20 \text{ times} = 60 \text{ seconds}$$


Therefore, turn ON for 60 seconds, turn OFF for 10 seconds, and repeat it approx. 10 times.

Even if the break-in is carried out in the above manner, the effect is slightly inferior to the regular case, but the breakin will be gradually completed during normal operation.

(3) Effect of break-in driving

Figures 1 and 2 are examples of torque measurements made when the exciting current is turned ON and OFF and when it is kept ON.

When the exciting current is turned ON and OFF, the torque becomes higher every time the current is turned ON and OFF, which verifies the effect of break-in. On the other hand, if the exciting current remains ON, the figure shows that the torque becomes saturated in the low state.

* In the following cases, break-in is insufficient.

- (1) Torque output remains low.
- (2) Torque does not stabilize.

(3) Noise, pulsation of torque, or stuck at startup occurs.

Usage precautions

8. For forced air cooling

(1) Install an air filter.

Generally, compressed air used as cooling air contains oil and moisture, so be sure to use clean dry air passed through an air filter (complete oil removal type).

(If compressed air not passed through an air filter is used, the powder becomes moist due to moisture and oil content and the performance drops sharply.)

(2) If the piping is long and it is branch piping, check if the air flow rate near the clutch/brake suction pipe is more than the specified amount.

9. Thermoblock cooling type

(1) An axial flow fan (blower) is provided. If the performance of this axial flow fan decreases, heat dissipation will be worse and the allowable continuous heat dissipation rate will be reduced, so install the fan with a clearance around it.

Especially when the surrounding environment is bad and there is a possibility of foreign matter adhering to the guard of the axial flow fan, clean it periodically.

(2) Since a thermal switch for detecting the temperature is provided on the side of the stator, be sure to connect it to an alarm device for alarm detection.

10. Selection

- Even within the allowable continuous heat dissipation, products cannot be used exceeding the rated torque.
- (2) When the control range of tension is wide, multiple clutches may be installed and switched over during operation. In this case, use an electromagnetic clutch to disconnect the unused clutch to prevent the output side from being forcibly idled.
- (3) When the gear ratio is too large, accurate control may not be possible due to the influence of mechanical loss. A gear ratio of 5 or less is recommended (especially in the low torque region).

11. Abnormal torque at startup

(1) Depending on the operation pattern (turning on the coil current at rotation stop and applying rotation to the input shaft, or starting rotation at the same time as turning on the coil current), a temporarily higher torque (peak torque) than specified may be generated at startup.

Especially when vibration is added while the current is off, powder tends to be unevenly distributed, so this tendency appears remarkably. To counter this problem, keep supplying weak exciting current to the coil of the clutch/brake even while it is stopped. This makes the problem less likely to occur.

(2) Peak torque may occur similarly when the powder is wet. In this case, however, the product may need to be replaced.

12. Others

- (1) Note that at high altitude the allowable continuous heat dissipation will be lowered due to atmospheric pressure. This specification applies to an altitude of 1000 m or less.
- (2) The protection degree is IP00. Therefore, the powder clutch itself may emit oxidized powder or fine powder, so it cannot be used where dust is completely prohibited.
- (3) The powder clutch/brake does not generate coupling sound or braking sound, unlike friction plate type clutches/ brakes. However, it generates friction sound because torque is generated by the friction force of powder connected by electromagnetic force. Normally, the friction sound is of a level that is not a problem in ordinary machines, but it may become large due to the influence of internal powder distribution (usually, the sound will be reduced after break-in and operation for some time).

Also, friction of the powder generates minute vibration. The vibration could resonate with the machine such as in a roll and could cause a loud noise.

- (4) There is no problem at the vibration levels of general printing machines, paper machines, packaging machines, etc. without abnormal vibration, but it cannot be used on machines with impact force.
- (5) When a voltage is applied to the clutch/brake, a magnetic flux is generated, and the installation shaft, etc. are magnetized by this flux. If this magnetization becomes a problem, installation with nonmagnetic materials is recommended, but it cannot be completely eliminated. Note that the protruding shafts of models such as the ZKB are also magnetized.
- (6) Lead wire length varies by approx. ±10%.(Example: Lead wire length 200 is 200 ±20 mm.)
- (7) Operating temperature and humidity of clutch/brakeAmbient temperature: 0 to 40°CRelative humidity: 30 to 90%

Fension Controller

Tension 1

Common Item

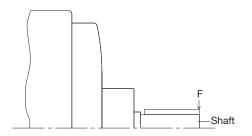
13. Allowable shaft load

- 1. Bearing load is determined based on a fatigue life of 15000 hours.
- 2. Thrust load is not permitted in principle.

(1) ZKB series

There are the following 2 methods of connecting the input and output of the ZKB type powder clutch/brake:

(a) Connection method using couplings


(b) Connection method using pulleys

In the case of connection using couplings in (a), our policy is to use elastic couplings, so the shaft radial load never becomes a problem.

However, in the case of pulley connection in (b), the product must be used by restricting the shaft radial load based on the shaft strength and bearing load capacity.

Table 1 Allowable shaft load (radial load) of ZKB series

Model name	Allowable shaft load (N)										
wodername	300 r/min	500 r/min	1000 r/min	1800 r/min							
ZKB-0.06	140	140	125	120							
ZKB-0.3	280	280	245	240							
ZKB-0.6	330	330	260	215							
ZKB-1.2	360	325	255	210							
ZKB-2.5	550	460	365	300							
ZKB-5	975	975	770	635							
ZKB-10	2090	1760	1400	1150							
ZKB-20	2600	2190	1740	1430							

- Natural cooling, forced air cooling, and water cooling clutches and brakes have the same values as long as they have the same torque capacities.
- 2. The table indicates allowable load values of the shaft strength or bearing radial load, whichever is smaller.
- The load application point is based on the shaft end face. Note that the permissible value will be small if the point of application is outside the end face.
- 4. Calculate the shaft load F by the following formula.

$$F = \frac{2T}{D} \times K(N)$$

- T: Transmission torque (N·m)
- D: Pulley diameter (m)
- K: Load factor (timing belt 1.5, V belt 2.5, sprocket 1.5)

(2) ZKG series

Table 2 Allowable shaft load (radial load) of ZKG series

Model name	Allowable shaft load (N)										
Wodername	300 r/min	500 r/min	1000 r/min	1800 r/min							
ZKG-5AN	30	30	30	30							
ZKG-10AN	75	75	75	75							
ZKG-20AN	120	120	120	120							
ZKG-50AN	210	210	210	210							
ZKG-100AN	240	240	240	240							
ZKG-5YN	30	30	30	30							
ZKG-10YN	75	75	75	75							
ZKG-20YN	120	120	120	120							
ZKG-50YN	450	400	340	280							

Note 1. Since both shafts of each ZKG type powder clutch have the same configuration, the allowable shaft loads are the same.

- Note 2. The load point is based on the shaft end face.
- Note 3. Note that when the load application point is outside the shaft end face, the allowable value becomes smaller.

(3) ZA series

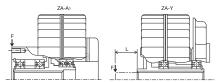
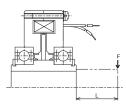

Table 3 Allowable shaft load (radial load) of ZA series

Table 5 Allowable Shall load (radial load) of ZA series											
Model	L (mm)	Allowable shaft load (N)									
name	L (11111)	300r/min	500r/min	1000r/min	1800r/min						
ZA-0.6A1	-	560	560 470 375								
ZA-1.2A1	-	1080	910	720	590						
ZA-2.5A1	-	1120	950	750	620						
ZA-5A1	-	1790	1510	1190	980						
ZA-10A1	-	1930	1630	1290	1060						
ZA-20A1	-	4430	3740	2960	-						
ZA-0.6Y	28	305	260	205	170						
ZA-1.2Y1	32	340	290	230	185						
ZA-2.5Y1	44.5	425	360	285	235						
ZA-5Y1	58	880	760	600	500						

Note 1. The load application point is based on the position indicated by "F" in the above figure.

Note that the permissible value will be small if the point of application is outside the above figure.

Note 2. In principle, pulleys cannot be directly applied to ZA-10Y1 to 20Y1.



(4) ZX series

Table 4 Allowable shaft load (radial load) of ZX series

Model name	L (mm)	Allowable shaft load (N)								
Modername		100 r/min	200 r/min	400 r/min						
ZX-0.3YN-24	24	1000	795	630						
ZX-0.6YN-24	28	1305	1035	820						
ZX-1.2YN-24	32	1485	1180	935						

- Note 1. The load application point is based on the position indicated by "F" in the figure.
- Note 2. Note that when the load application point is outside the "F" position, the allowable value becomes smaller.

DIANG			 	 	 				 				
_													
<u>1</u>													
, ,			 	 	 								
אפרפו ויי				 									
D													
D					 							 	
2					 							 	

Tension Controller

Clutch Amplifier

Tension Meter/Tension Amplifier

Tension Detector

Tension Controller

Tension Controller

Clutch Amplifier

Tension Meter/ Tension Amplifier

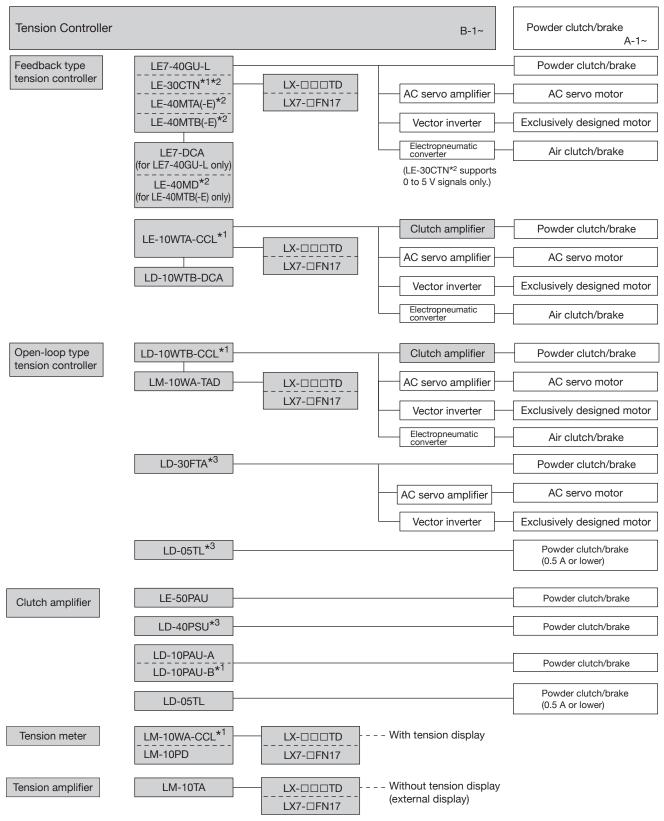

Tension Detector

Table of Contents

Tension Controller

Product Organization	. B-3
Tension Controller LE7-40GU-L tension controller LE-10WTA-CCL/LD-10WTB-CCL tension controller LE-30CTN tension controller LE-40MTA(-E)/LE-40MTB(-E) tension controller LE-40MD reel diameter calculation unit LD-30FTA tension controller LD-05TL tension controller	B-16 B-21 B-28 B-37 B-40
Clutch Amplifier LE-50PAU power amplifier LD-40PSU power supply unit LD-10PAU power amplifier	B-50
Tension Meter/Tension Amplifier LM-10WA-CCL tension meter LM-10PD tension meter LM-10TA tension amplifier	B-61
Tension Detector LX-TD tension detector LX7-F tension detector	

Product Organization (are products covered in this chapter)

Note: AC servo motors and vector control motors are covered under torque controllable products.

*1: LE-10WTA-CCL, LD-10WTB-CCL, LE-30CTN, LM-10WA-CCL, LM-10WA-TAD, LD-10WTB-DCA, LD-10PAU-B, LE7-40GU-L, LE7-DCA and LE7-CCL comply with CE marking. For details, refer to the instruction manual.

*2: Order production will begin in October 2021.

*3: Order production will begin in April 2024.

LE7-40GU-L tension controller

Feedback control Open-

The LE7-40GU-L tension controller is used in combination with a tension detector to perform feedback control of the material tension during unwinding, intermediate shaft, and winding of long materials. Such actuators as powder clutches/brakes, servo motors (torque mode), and air clutches/brakes can be used with these controllers, and they come with a built-in clutch amplifier and auxiliary power supply for clutches and brakes that operate on 24 V DC.

Features

Abundant tension control functions

- Target tension can be controlled in accordance with the material and reel diameter using the taper function.
- Inertia compensation can reduce torque fluctuations due to acceleration and deceleration.
- Mechanical loss correction can reduce the effect of torque due to mechanical loss.
- Torque output can be corrected in accordance with each model of Mitsubishi Electric powder clutches/brakes.

Extended functions by the LE7-DCA reel diameter calculation option

Sophisticated tension control using reel diameter, measurement length and line speed information is achieved by con-

necting the LE7-DCA reel diameter calculation option (sold separately).

* For details, refer to the section on the LE7-DCA reel diameter calculation option.

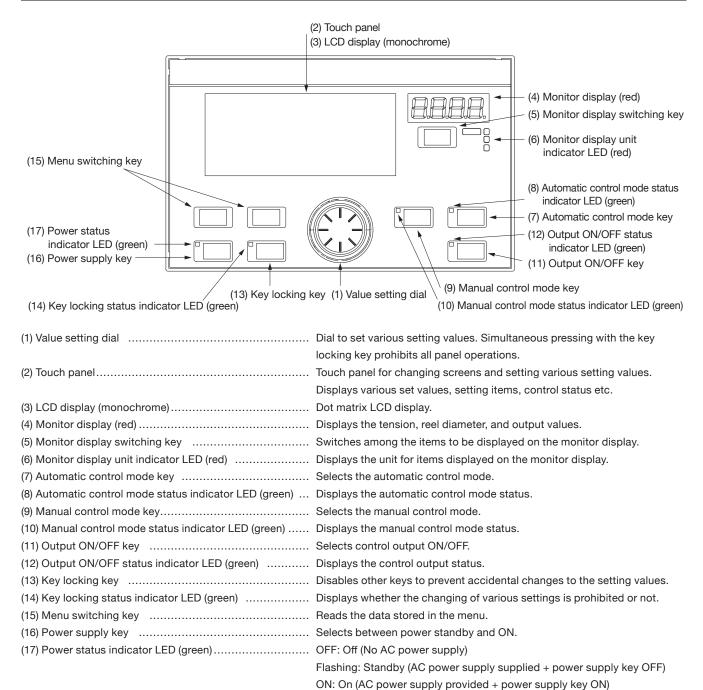
Intuitive operation and multilingual display

- Liquid crystal touch panel is adopted. Intuitive setting of numerical values is possible through the touch panel and dial operation.
- The buttons are designed with graphic symbols for easy understanding.
- The liquid crystal touch panel can be switched between English, Japanese, and Chinese (simplified).

Compatible with various FA networks

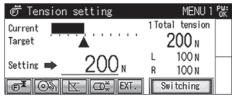
- Equipped with the Ethernet/RS-485 communication port as standard, it supports various communication protocols such as CC-Link IE Field Network Basic and MODBUS/TCP.
- CC-Link Ver. 2 communication can be supported by using the LE7-CCL network option (sold separately).
- Backup/restore of the product and batch management of parameters are possible by using the tension controller setting sheet for LE7-40GU-L.
- * To use the tension controller setting sheet for LE7-40GU-L, MX Component (sold separately) and Microsoft Excel[®] must be installed. For the operating environment, refer to the instruction manual.

Compatibility with existing products

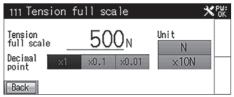

- Replacement can be performed smoothly by selecting a mode that is limited to the functions of the LE-40MTA (-E) /LE-40MTB (-E) tension controller and LE-30CTN tension controller.
- The panel can be mounted compatibly with existing products by using an attachment (LE7-ATT).

Compliance with standards

• EN standard: EC directive/CE marking compliant * For details, refer to the instruction manual.

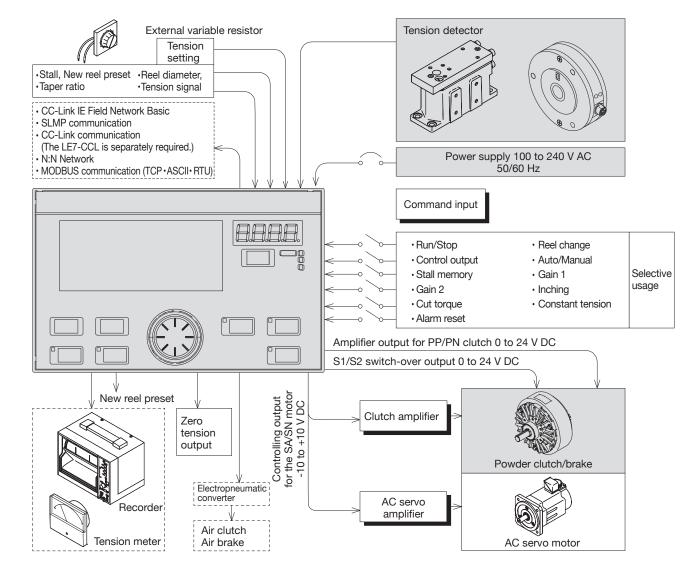


Panel screen configuration

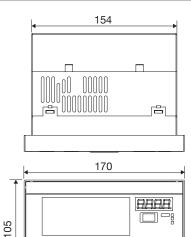

Sample display switching

· Example of operation mode screen

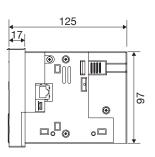
Set the target tension in machine operation.


· Example of adjustment mode screen

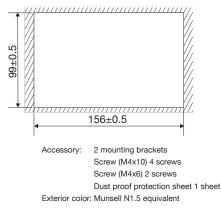
Set up the tension full scale.


Externally connected devices

Some of the devices that can be connected to the input/output terminals of this model of tension controller include the following. Tension detector, actuator, and some of the signal input switches are essential to the system; other components are connected as necessary.



Outline dimensions (mm)


Pr

۳C

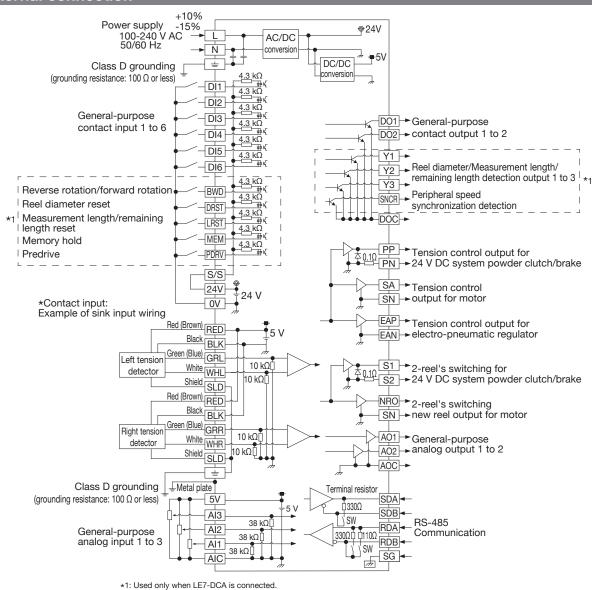
· Panel cutting dimensions for mounting on panel surfaces

Specifications

• General specifications

Item		Specifications						
Operating ambient temperature	0 to +40°C	to +40°C						
Storage ambient temperature	-20 to +60°C							
Operating ambient humidity	35 to 85% RH (no	condensation)						
Storage ambient humidity	35 to 85% RH (no	condensation)						
		Frequency	Acceleration	Half amplitude				
	Denal mounting	5 to 8.4 Hz	-	1.75 mm	-			
Vibration resistance*1	Panel mounting	8.4 to 150 Hz	4.9 m/s ²	-	10 times in each of X, and Z directions (80 minutes in total)			
		5 to 8.4 Hz	-	3.50 mm				
	Floor mounting	8.4 to 150 Hz	9.8 m/s ²	-				
Impact resistance*1	147 m/s ² , action t	time 11 ms, 3 times in each	of X, Y and Z bi-directions	with half-sine pulse				
Noise tolerance	Noise voltage: 10	00 Vp-p, Noise width: 1 μs	Using 30 to 100 Hz cycle n	oise simulator				
Withstand voltage	1500 V AC for 1 n	ninute, measured between	all terminals together* ² an	d the grounding terminal				
Insulation resistance	$5 \text{ M}\Omega$ or more usi	5 MΩ or more using 500 V DC insulation resistance tester: Measure across all terminals* ² and grounding terminal						
Grounding	Class D grounding (100 Ω or less, common grounding with strong power field not possible)							
Operating atmosphere	Free of corrosive,	ree of corrosive, flammable or conductive gases, and low levels of dust						
Installation place	In the control par	lel						

*1: Evaluation criteria are based on IEC 61131-2.


*2: SLD terminal is excluded.

• Basic specifications

Item		Specifications						
Outline dimensions		105(H) × 170(W) × 125(D) mm						
Weight		Approx. 1.0 kg						
Installation meth	od	Panel mounting, floor mounting						
	Power input terminal block	Spring clamp 24 to 16 AWG (0.2 to 1.5 mm ²) terminal block, not detachable						
Wiring	Powder clutch/brake Output terminal block	Spring clamp 24 to 16 AWG (0.2 to 1.5 mm ²) terminal block, not detachable						
	Signal I/O terminal block	Spring clamp 24 to 16 AWG (0.2 to 1.5 mm ²) terminal block, detachable						
	Input	100 to 240 V AC						
Davisaria		For tension detector 5 V DC						
Power supply	Output	For contact input 24 V DC						
		For variable resistor 5 V DC						
	LCD	320 × 128 dots TFT monochrome						
Diaplay	7-segment LED (for monitor)	4 digits (1 set)						
Display	Unit display LED	4 types (1 set)						
	Status display LED	6 points						
	Touch panel	Analog resistance film type						
Operation	Jog dial	With push ON switch						
	Key switch	8 points						
Contact signal	Input	General-purpose, 6 points, sink/source selectable						
Contact signal	Output	General-purpose, 2 points						
	Input	General-purpose, 3 points						
Analog signal	Output	General-purpose, 2 points						
Tension Detecto	r Input	For LX type tension detector or for strain gauge (range switching)						
	Output for 24 V DC clutch/	0 to 24 V DC, rated 2.7 A for control, constant voltage/constant current control selectable						
	brake	For pre-drive/old reel stop. Total 0 to 24 V DC control is 2.7 A or less.						
Control output	Voltage output for servo	±2.7 V DC, ±5 V DC, ±8 V DC, ±10 V DC, selectable						
oonnoi output	amplifier and inverter	For pre-drive/old reel stop. ±2.7 V DC, ±5 V DC, ±8 V DC, ±10 V DC, selectable						
	Current output for electro-pneumatic converter	0 to 20 mA DC, 4 to 20 mA DC, selectable						
	Ethernet communication	CC-Link IE Field Network Basic, SLMP, MODBUS/TCP (slave), GT Designer3						
Communication	USB communication	Personal computer communication (GT Designer3 and data transfer tools)						
	RS-485 communication*1	N:N networks, MODBUS/RTU, and ASCII (slave)						
Optional	Extension option	LE7-DCA type reel diameter calculation option and LE7-CCL type network option*1						
components	External memory cassette	LD-8 EEPROM type EEPROM cassette						

*1: When connecting to CC-Link by using LE7-CCL, RS-485 communication cannot be used.

External connection

Terminal layout

 • Powder clutch/brake output signal terminal block (CN2)
 • Power terminal block (CN1)
 ↓ NC N L
 • Signal terminal block 1 (CN3)

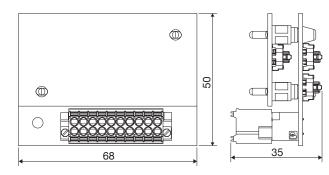
* Signa	artenni	inal Dic		0143)						-									
0 V	S/S	24 V	DI6	DI5	DI4	DI3	DI2	DI1	NC	AO2	AO1	Al2	5 V	SLD	SLD	WHL	GRL	BLK	RED
DOC	DO2	DO1	NC	SN	NRO	SN	SA	EAN	EAP	AOC	AIC	Al3	Al1	Ť	SLD	WHR	GRR	BLK	RED

 Signa 	al term	inal blo	ock 2 (0	CN4)						
SG	RDA	SDA	NC	NC	NC	SNCR	Y3	Y2	Y1	
RDB	SDB	NC	NC	NC	PDRV	MEM	LRST	DRST	BWD	
*** : Input system terminal							***	: Outp	ut syst	em terminal

Item

LE7-DCA reel diameter calculation option

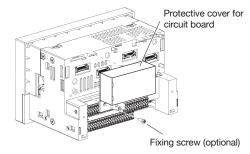
The reel diameter calculation option LE7-DCA is connected to the LE7-40GU-L tension controller, and is used for detecting the reel diameter in a non-contact method by calculating the ratio of reel shaft pulses and measuring pulses. In addition, the line speed can be detected and the length can be measured so that the reel shaft rotational speed command and timing detection signal can be output based on the reel diameter information. (This product cannot be used alone.)


Features

Connecting to the LE7-40GU-L tension controller enables advanced tension control such as open-loop control and feedforward/feedback combined control.

- Constant slip control of the powder clutch possible for winding
 - When winding with an inverter and a powder clutch, performing constant slip control of the powder clutch using the reel shaft rotation speed signal greatly reduces heat dissipation. It has various advantages compared with using the powder clutch at a fixed input rotation speed.
 - The selection of a powder clutch with a smaller rated torque may be possible.
 - The life of the powder clutch may be significantly extended.
- Timing detection of reel diameter and length measurement is possible.

3 contact points are provided for connection to various timing detectors.


Outline dimensions (mm)

Clutch Amplifie

Mounting to the LE7-40GU-L tension controller

Powder Clutch/Brake

Specifications

Basic specifications

	Item	Specifications
Outline of	limensions	50(H) × 68(W) × 35(D) mm
Weight		Approx. 0.2 kg
_	Input	No input (supplied from LE7-40GU-L)
Power supply	Output	12 V DC for encoder
Supply	Output	12 V DC for proximity switch
	Reel shaft pulse input	Input for reel shaft pulse sensor, 2 points
Input	Measuring pulse input	Input for measuring pulse sensor
	Contact input*1	Reverse rotation/forward rotation, reel diameter reset, measurement length/ residual length reset, memory hold, 5 points for pre-drive
Output	Contact output*1	Timing detection, 3 points For reel diameter, measurement length/remaining length, switchable
		Peripheral speed synchronization

*1: LE7-40GU-L input/output signals are used for the contact input and contact output. Refer to the following for the input/output specifications.

LE7-40GU-L APPLICATION MANUAL (SH-170022ENG)

• External specifications

Item	Specifications
Target line velocity	V = 0.1 to 1,000 m/min
Acceleration	a = V/t = 1 to 50 m/min/sec t = acceleration/deceleration time
Reel diameter	D = 0 to 2,000 mmφ
Material thickness	T = 0.1 µm to 10 mm
Measurement length/ remaining length	0 to 65,000 m
Reel shaft rotational speed	N = 0 to 3,600 r/min
Measuring pulse frequency	1.5 Hz to 30 kHz
Reel shaft pulse frequency	0 to 200 Hz

• I/O specifications

Item	Terminal names		Specifications				
	12 V	Pulse sensor power	 The rated voltage: 12 V DC Voltage range: 11.4 to 12.6 V DC Current value: 130 mA or less Total of measuring pulse sensor and reel shaft pulse sensor × 2 				
Power output		Pulse input power	The rated voltage: 12 V DC Voltage range: 11.4 to 12.6 V DC Current value: 21 mA or less				
	0 V	0 V					
	SPL	Measuring pulse input	 ON/OFF time width = 15 µsec or more each Frequency = 30 kHz or less 1 pulse per measuring roll circumference 1mm*¹ 				
Pulse input	SPRA	Reel shaft pulse input (A-axis)	ON/OFF time width = 0.5 msec or more each	 11.4 to 12.6 V DC ON current =approx. 7 mA 			
	SPRB	Frequency = 200 Hz or less Frequency = 200 Hz or less 1 pulse per reel shaft rotation*2		Sink/source input			
	SPS/S	Pulse input sink/source	switching				
	SLD	For shield connection					

*1: Based on 1 pulse per 1 mm of measuring roll circumference. Note that this can be compensated in the range of 90 to 180% using the electronic gear function.

+2: Based on 1 pulse per reel shaft rotation. Note that if the material is thick, the reel diameter calculation resolution can be increased by increasing the number of pulses per rotation to 2, 4, 8 or 16 using the parameters.

Tension Detector

Common Item

• Pulse input specification

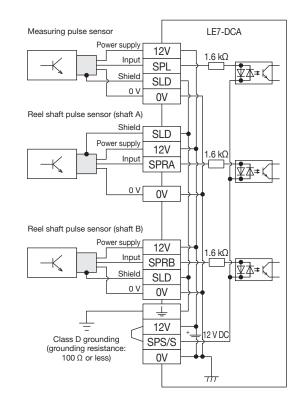
	Iten	n	Specifications
Voltage	Pulse sensor po	wer	The rated voltage: 12 V DC Voltage range: 11.4 to 12.6 V DC Current value: 130 mA or less* ³
output	Pulse input pow	er	The rated voltage: 12 V DC Voltage range: 11.4 to 12.6 V DC Current value: 21 mA or less*4
	Connection shap	ре	Terminal block
	Input format		Sink/source input switchable
	Input signal volta	age	12 V DC
	Input signal curr	ent	7 mA
	Innut roomonoo	Measuring pulse input	30 kHz or less
	Input response frequency	Reel shaft pulse input (reel A, reel B)	200 Hz or less
Pulse input	ON/OFF time	Measuring pulse input	15 µs or more
	width	Reel shaft pulse input (reel A, reel B)	0.5 μs or more
	Number of	Measuring pulse input	1 pulse per measuring roll circumference 1 mm*1
	pulses	Reel shaft pulse input (reel A, reel B)	1 pulse per reel shaft rotation*2
	Input signal form	nat	Sink: NPN open collector Source: PNP open collector

*1: Based on 1 pulse per 1 mm of measuring roll circumference. Note that this can be compensated in the range of 90 to 180% using the electronic gear function.

*2: Based on 1 pulse per reel shaft rotation. Note that if the material is thick, the reel diameter calculation resolution can be increased by increasing the number of pulses per rotation to 2, 4, 8 or 16 using the parameters.

*3: The total current consumption of the measuring pulse sensor and reel shaft pulse sensors (reels A and B) should be 12 V DC, 130 mA or less.

*4: The input current for the measuring pulse input and reel shaft pulse input (reels A and B) is 12 V DC, 7 mA/1 point.

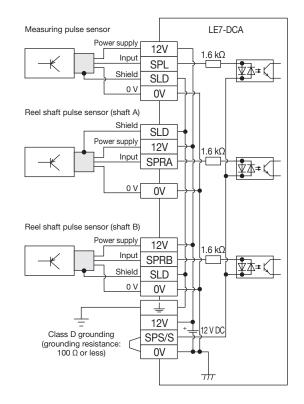

Available sensor

Item	Reel shaft pulse sensor (reel A, reel B)	Measuring pulse sensor
Power supply voltage	12 V DC ±10%	12 V DC ±10%
Current consumption	20 mA or less	90 mA or less
Output format	NPN open collector output PNP open collector output	NPN open collector output PNP open collector output
Output capacity	Applied voltage = 20 V or more Sink/source current = 10 mA or more	Applied voltage = 20 V or more Sink/source current = 10 mA or more
Recommended part*1	OMRON E2E-X□E1 proximity switch TL-Q□MC1 proximity switch	OMRON E6A2 rotary encoder E6B2 rotary encoder KOYO ELECTRONICS TRD-J□-RZ rotary encoder

*1: Supply power to the measuring pulse sensor from the 12 V external power supply.

External connection

Sink input wiring


Precautions

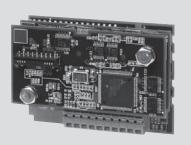
- When performing sink input wiring, short the SPS/S terminal and 12 V terminal.
- Do not wire the pulse input sink/source switching terminal (SPS/S) and LE7-40GU-L sink/source switching terminal (S/S) to a common terminal.
- Do not supply power to the 12 V and 0 V terminals from outside.

Terminal layout

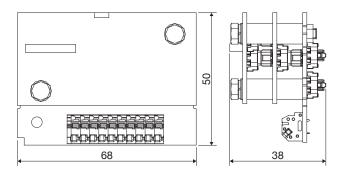
NC	NC	0V	0V	SPRA	12V	SLD	SLD	SPL	12V
NC	NC	0V	0V	SPS/S	12V	Ť	SLD	SPRB	12V

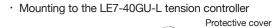
• Source input wiring

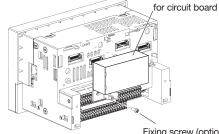
Precautions


- When performing source input wiring, short the SPS/S terminal and 0 V terminal.
- Do not wire the pulse input sink/source switching terminal (SPS/S) and LE7-40GU-L sink/source switching terminal (S/S) to a common terminal.
- Do not supply power to the 12 V and 0 V terminals from outside.

LE7-CCL network option


The LE7-CCL network option is an extension option for connecting to the LE7-40GU-L tension controller and serving as a remote device station of CC-Link Ver. 1.10/Ver. 2.00. (This product cannot be used alone.)


Features

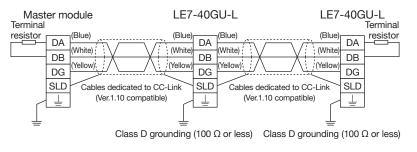

- Connects to the LE7-40GU-L tension controller to act as a remote device station for CC-Link V2.
- Can be built into the main unit, enabling more compact, faster installation.

Outline dimensions (mm)

Fixing screw (optional)

Specifications

Basic specifications


		•	
	Item Outline dimensions		Specifications
			50(H) × 68(W) × 38(D) mm
	Weight		Approx. 0.2 kg
	Power supply Input Communication		No input (supplied from LE7-40GU-L)
			CC-Link Ver. 1.10/Ver. 2.00 remote device station

Communication specifications

Item	Specifications
CC-Link supported version	Ver. 2.00 (Ver. 1.10 also supported)
Station type	Remote device station
Station No.	1 to 64*
Transmission speed	156 Kbps/625 Kbps/2.5 Mbps/5 Mbps/10 Mbps
Transmission distance	According to the CC-Link specifications. For details, refer to the manual of the master station.
Number of occupied stations	2 or 4
Setting items	Station number, Communication speed, number of occupied stations, and version setting
Transmission topology	Bus (RS-458)
Transmission format	HDLC compliant
Transmission cable	Cables dedicated to CC-Link (Ver. 1.10 compatible)

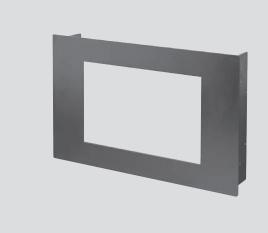
*: When the number of occupied stations is two, the maximum start station number is 63. When the number of occupied stations is four, the maximum start station number is 61.

• External connection

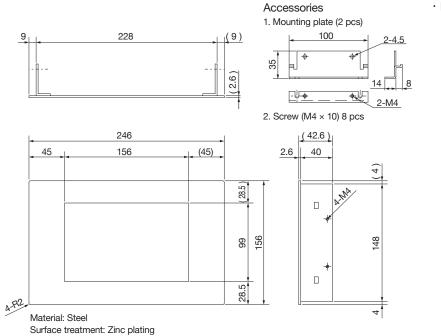
• Terminal layout

		-							
Ŧ	SLD	SLD	NC	DG	DB	DA	DG	DB	DA

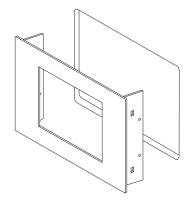
Common Item


Powder Clutch/Brake

LE7-ATT attachment


The LE7-ATT attachment is used to replace the LE-40MT□(-E) or LE-30CT□ with the LE7-40GU-L.

Features


• Insert the attachment into the control panel cut part and attach the LE7-40GU-L to the attachment.

Outline dimensions (mm)

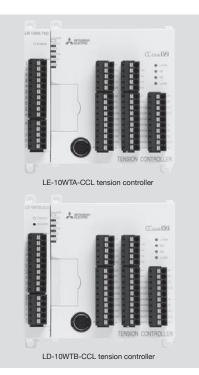
· Mounting to the control panel

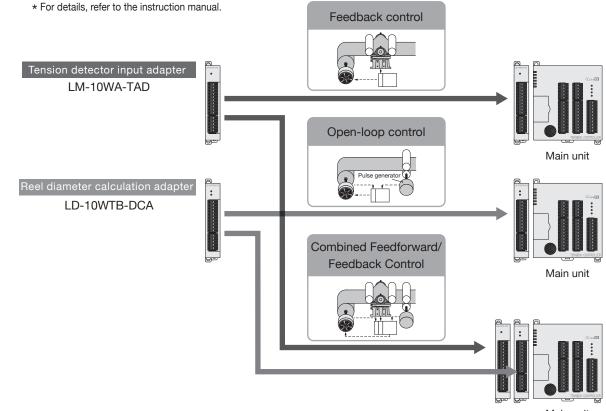
LE-10WTA-CCL/LD-10WTB-CCL tension controller

Feedback control Open-lo

Open-loop control

The LE-10WTA-CCL and LD-10WTB-CCL tension controllers offer various methods of tension control in combination with the tension detector input adapter and reel diameter calculation adapter connected to the main unit.


Features


• Highly advanced tension control

- Perform feedback control or open-loop control in accordance with the connected adapter. Highly precise tension controls with high response and stability are achieved by feedforward/feedback complex control brought by the combination of feedback control and open-loop control.
- Sophisticated tension control is achieved using the polygonal line taper function and inertia compensation gain automatic calculation based on the reel diameter data from the reel diameter calculation adapter and on the line speed/line acceleration data.
- The polygonal line taper function allows the setting of up to 8 points to enable detailed taper control in accordance with the material and reel diameter.

• Compliance with standards

EN standard: EC directive/CE marking (EMC directive) compliant
 * For details, refer to the instruction manual.

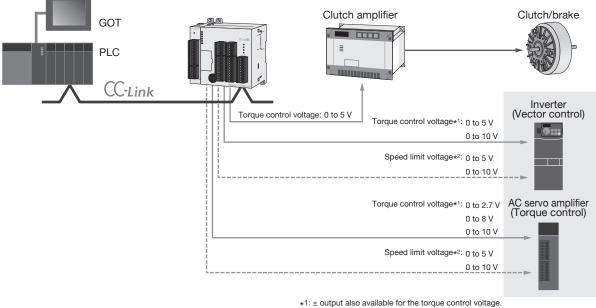
Main unit

Clutch Amplifie

Tension Controller

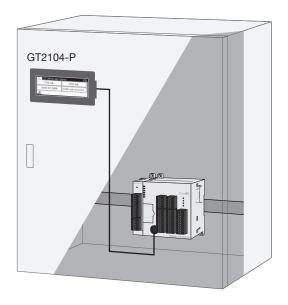
Common Item

Tension control for up to 2 shafts

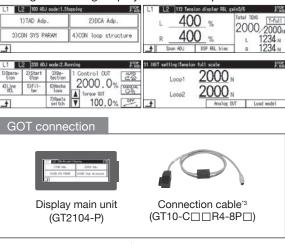

Tension control can be executed for up to 2 shafts when the optional adapter is installed.

• Diverse communication functions

- Because it comes with built-in CC-Link V2 remote device station functionality, it is possible to access the settings, monitor functionality, and correct the tension, including zero adjustment and span adjustment, over the CC-Link using a PLC, such as a master station.
- By connecting the optional LM-10WA-USB USB interface, you can use MX Sheet (Microsoft[®] Excel[®] support tool) to read tension values and write setting values through the PC.

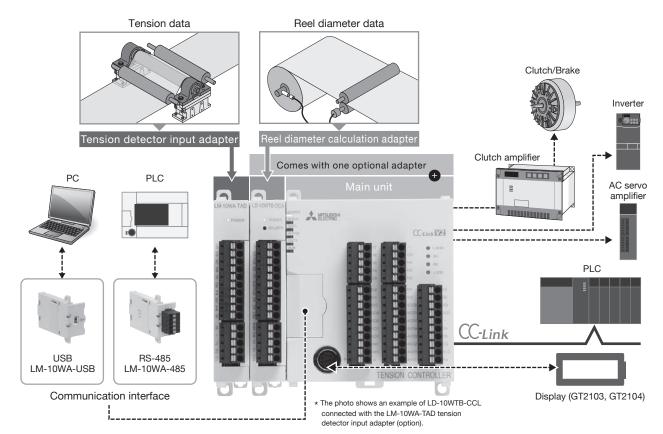

Improved support for motor control

Compatible with the input specifications of the inverter and servo amplifier to facilitate motor control. The reel rotation speed output can be used as the speed limit when the LD-10WTB-DCA reel diameter calculation adapter is connected.

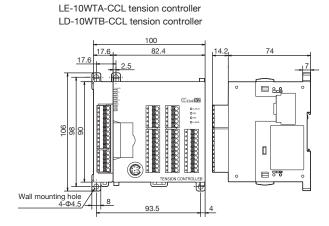


* 1: ± output also available for the torque control voltage
 *2: Available only when LD-10WTB-DCA is connected.

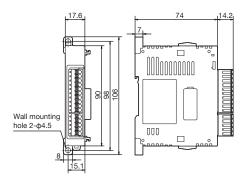
• Manipulation and display of settings from the panel using the graphic operation terminal for setting and monitoring By connecting our GOT2000 series monitor display and installing the tension controller inside the panel, it is possible to change and monitor the settings through the display on the board surface.



Setting/monitoring display screen example


*3: GT21-C R4-8P5 cannot be used.

Externally connected devices


The LE-10WTA-CCL is supplied with one tension detector input adapter as an accessory. The LD-10WTB-CCL is supplied with one reel diameter calculation adapter as an accessory.

Outline dimensions (mm)

Exterior color: Munsell 0.08 GY/7.64/0.81 equivalent

LM-10WA-TAD tension detector input adapter LD-10WTB-DCA reel diameter calculation adapter

Exterior color: Munsell 0.08 GY/7.64/0.81 equivalent

Tension Controller

Common Item

Specifications

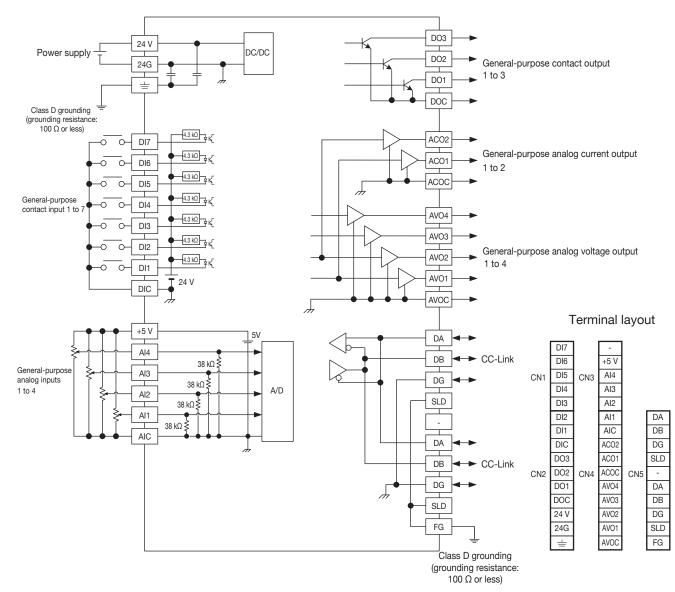
General specifications

Item			Specifications						
Operating ambient temperature	-5 to +55°C								
Storage ambient temperature	-25 to +75°C								
Operating ambient humidity	35 to 85% RH (no cond	lensation)							
	Installation	Frequency	Half amplitude						
	DIN rail installation	10 to 57 Hz	-	0.035 mm	X, Y, Z				
Vibration resistance	Din rai installation	57 to 150 Hz	4.9 m/s ²	-	10 times in each				
	Diverse in stallation	10 to 57 Hz	-	0.075 mm	(total 80 minutes each)				
	Direct installation	57 to 150 Hz	9.8 m/s ²	-					
Impact resistance									
Power noise withstand level	Noise voltage: 500 Vp-p, noise width 1 μ s Measured by a noise simulator with frequency range of 30 to 100 Hz								
Withstand voltage	500 V AC for 1 minute ·) V AC for 1 minute (between all terminals together and the grounding terminal)							
Insulation resistance	5 MΩ or more when measured with 500 V DC insulation resistance tester ··· (between all terminals together and the grounding terminal)								
Grounding	Class D grounding (100	Class D grounding (100 Ω or less, common grounding with strong power field not possible)							
Operating environment	Environment must be fr	ee of corrosive or flamm	able gases as well as co	onductive dust, and mus	st have low levels of dust.				
LE-10WTA-CCL	Approx. 370 g								
Weight LD-10WTB-CCL	Approx. 380 g								
Installation method	DIN rail, wall surface, p	DIN rail, wall surface, panel inside installation							

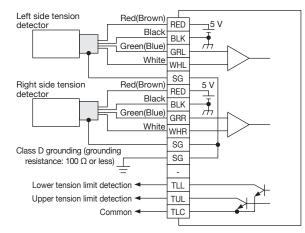
• Function specifications

	Item	Specifications
Power	supply	24 V DC +20% -15%, power consumption 20 W, inrush current 20 A, 2 ms
Input	Contact input	General-purpose contact input: 7 points
d L	Analog input (voltage)	General-purpose analog input: 4 points
	Power for variable resistor	5 V power for variable resistor
ŧ	Contact output	General-purpose contact output: 3 points
Output	Analog output (voltage)	General-purpose analog output: 4 points
0	Analog output (current)	General-purpose analog output: 2 points * In conjunction with analog output (voltage)
Ę	GOT connection	RS-422 9P round DIN connector * Connection cable: GT10-C□□□R4-8P□
Communication	Serial communications	 • RS-485: N:N networks, parallel link (FX_{3U}, FX_{3UC}, FX_{2N}, FX_{2NC}), MODBUS (RTU), MODBUS (ASCII) • USB: PC (MX Sheet) * Only when the communication interface (option) is connected. CC-Link and RS-485 communications cannot be used simultaneously.
Ŭ	CC-Link	Can be connected as a remote device station.
	External memory	LD-8 EEPROM (option)

[LM-10WA-TAD tension detector input adapter]

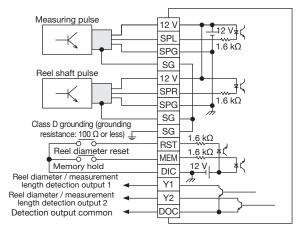

	Item	Specifications
Input	Compatible tension sensor	LX-TD/LX7-F tension detector, strain gauge (2 mV/V)
	Power supply for tension sensor	+5 V DC, 20 mA
Output	Tension lower limit contact output	
	Tension upper limit contact input	Open collector output, 0.1 A (resistive load), 30 V DC or less
Weigh	t	Approx. 80 g

[LD-10WTB-DCA reel diameter calculation adapter]


	Item	Specifications
	Measuring pulse input	Frequency: 30 kHz or less
Input	Reel shaft pulse input	Frequency: 200 Hz or less
d L	Reel diameter reset input	ON current: Approx. 7 mA
	Memory hold input	ON current. Approx. 7 mA
	Encoder power supply	12 V DC ±0.5 V 90 mA or less
Output	Proximity switch	12 V DC ±0.5 V 20 mA or less
Out	Timing detection output 1 to 2	Open collector output, 0.1 A (resistive load), 30 V DC or less
Weight	t	Approx. 90 g

External connection

Main unit



LM-10WA-TAD tension detector input adapter

LD-10WTB-DCA

reel diameter calculation adapter

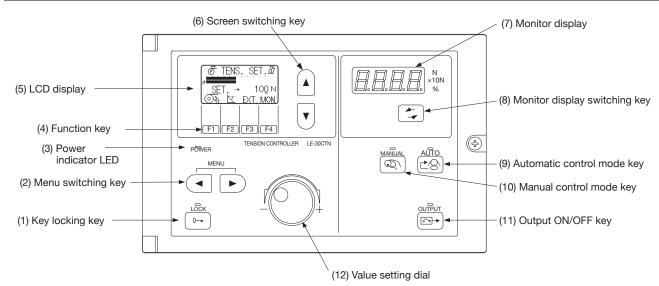
LE-30CTN tension controller

End of March 2024 Scheduled completion of production

Feedback control

The LE-30CTN tension controller receives the signal from the LX7-F/LX-TD tension detector to automatically control the material tension during unwinding, intermediate shaft, and winding of long materials. It generates a control voltage of 0 to 24 V for the powder clutch/brake and generates 0 to 5 V torque command voltage for the AC servo amplifier.

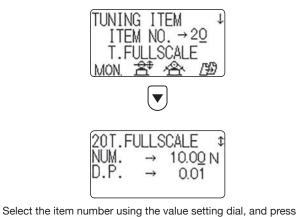
Features


- Menu function as a standard feature. Allows storage and readout of eight kinds of operation data.
- Quick and easy function selection with function keys (F1 to F4).
- · Uses a dot matrix type LCD display.
- Language displayed on the LCD display can be selected between English, Japanese, and simplified Chinese by the DIP switch.
- Automatic decision of polarity of tension detector. This enables wiring without worrying about compression/ tension use.
- Auto zero/span adjustment method is adopted, eliminating the need for adjustment.
- Operates on a wide range of supply voltage from 100 V to 240 V AC.

• Compliance with standards

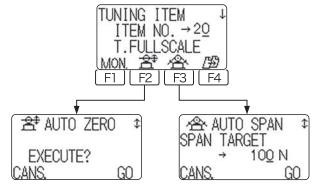
EN standard: EC directive/CE marking compliant
 * For details, refer to the instruction manual.

Panel screen configuration



(1) Key locking key	Disables other keys to prevent accidental changes to the setting values.
(2) Menu switching key	Reads the data stored in the menu.
(3) Power indicator LED	Lit when the power is turned on. There is no power switch on the main unit. Provide a
	switch that opens and closes all phases on the wiring side of the power supply, and open
	and close all phases.
(4) Function key	Switches the screen on the LCD display. The functions of these keys vary on different
	screens.
(5) LCD display	Dot matrix type LCD display. Displays various setting values, setting items, control status etc.
(6) Screen switching key	Switches the screen on the LCD display.
(7) Monitor display	Displays the tension and output values.
(8) Monitor display switching key	Switches among the items to be displayed on the monitor display (7).
(9) Automatic control mode key	Selects the automatic control mode.
(10) Manual control mode key	Selects the manual control mode.
(11) Output ON/OFF key	Turns on/off the control output.
(12) Value setting dial	Dial to set various setting values.

• Sample screen switching

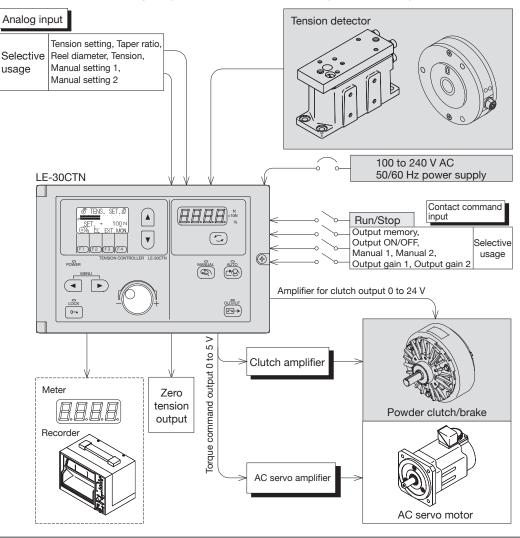

· Switching by item number

the item number.

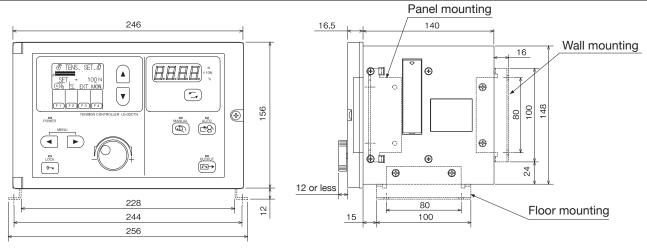
the display switch key to go to the screen that corresponds to

· Switching by function key

Press the function key (F1 to F4) to go to the screen that corresponds to the pictorial symbol that appears above each function key.


(The functions of these keys vary on different screens.)

Common Item

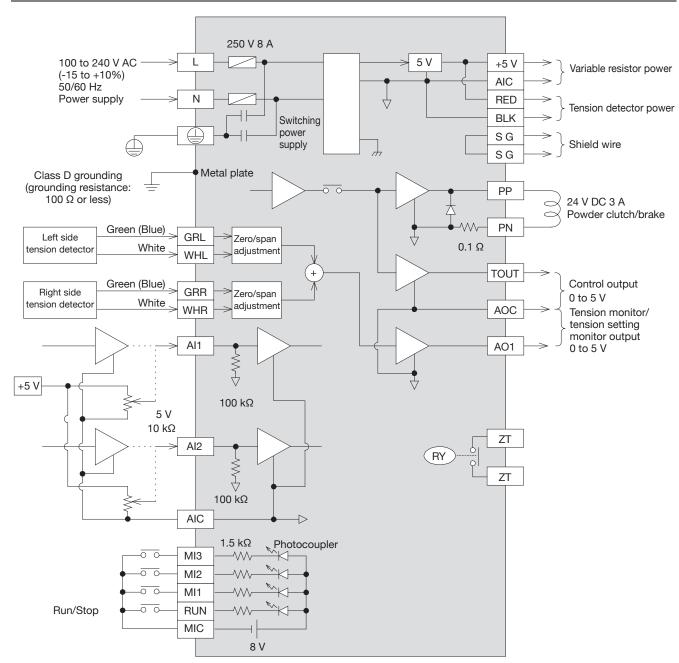

Fension Controller

Externally connected devices

Some of the devices that can be connected to the input/output terminals of this model of tension controller include the following. Tension detector, actuator, and some of the signal input switches are essential to the system; other components are connected as necessary.

Outline dimensions (mm)

Panel cut dimensions


Specifications

Item		Specifications									
	Input	100 to 240 V AC (-15 to +10%), 50/60 Hz, Power consumption: 400 VA Power supply fuse: 250 V T5AH \times 2 built-in, Inrush current: 30 A 300 ms Instantaneous power failure allowable time: 10 ms									
Power supply	Output	DC 5 V tension detector power supply You can connect one LX-TD/LX7-F tension detector on each side.									
		Service power supply for external variable resistor: 5 V DC, 50 mA or less									
		Contact input common terminal									
		Run/stop: ON = automatic operation, OFF = stop		8 V DC 4.5 mA/1 point							
Contact signal	Input	Assignable to the following functions. Assign the functions, - Output memory, output gain 1, output gain 2, output ON-OFF, manual output 1, and manual output 2 Assign the functions by parameters.									
	Output	Zero tension detection output: Setting value 0 to 2000 N (2000 × 10 N) 250 V AC, 0.5 A or 30 V DC, 0.5 A									
		Tension Detector Input When only one LX-TD tension detector is used, it is necessary to short-circuit GR and WH The compression/tensile load is determined automatically.	of the other side tha	t will not be used.							
	Input	Analog input common terminal									
Analog signal		Select from the following functions. Tension setting signal, reel diameter signal, external tension signal, taper ratio setting signal signal 1, manual setting signal 2 Voltage signal of 0 to 5 V DC or 10 k Ω variable resistor	al, manual setting	Assign the functions by parameters.							
		Analog output common terminal									
		Control output 0 to 5 V DC clutch amplifier, AC servo amplifier		Load resistance							
	Output	Tension monitor/tension setting monitor output 0 to 5 V DC Set functions using the DIP sv	vitches.	1 kΩ or more							
		24 V DC powder clutch/brake 0 to 24 V DC, 3 A or less		1							
Weigh	nt	Approx. 3.5 kg									
Installation r	nethod	Floor surface, wall surface, and panel mounting									
Major functions		Display type Dot matrix LCD Tension display 1 to 2000 N (digital + bar graph), output % display Constant setting Numerical value setting using rotary type pulser Screen switching Switching by item number setting or function key Control function Stop timer, stop gain, output correction, taper control, weak excitation function, fixed output setting, automatic judgment of polarity of tension detector, auto zero/span adjustment, menu registration/reading function									
Operating ambient temperature		0 to +40°C									
Operating ambient humidity		35 to 85% RH (no condensation)									
Vibration res	sistance	10 to 55 Hz, 0.5 mm (up to 4.9 m/s ²) \cdots 2 hours each in 3 axial directions									
Impact resi	stance	98 m/s ² 3 times each in 3 axial directions									
Power noise v level		Noise voltage 1000 Vp-p, using a noise simulator with noise width of 1 μs and frequency o	f 30 to 100 Hz								
Withstand v	/oltage	Overvoltage category II 1500 V AC for 1 minute (between all terminals together and the grounding terminal)									
Insulation res	sistance	$5\ \text{M}\Omega$ or more when measured with 500 V DC insulation resistance tester \cdots Measured all terminal	erminals together an	d the grounding							
Ground	ing	Class D grounding, ground resistance of 100 Ω or less (common grounding with strong por	wer field not possible	e)							
Operating env	vironment	Environment must be free of corrosive gases, flammable gases as well as conductive dust.	and must have low	levels of dust							

Parameter list

			Setting	ı range		
	Setting items	Unit	Minimum	Maximum	 Initial setting 	
	Tension setting value	N, × 10 N	1	Full scale tension	200	
	Full scale value	N, × 10 N	1	2000	500	
	Decimal point	-	0.01,	0.1, 1	1	
L	Zero adjustment	-	0	0	0	
Tension	Span adjustment set value	N, × 10 N		1 to full scale tension (1/3 or more of full scale value is required.)		
	Manual zero calibration	N, × 10 N	-999	+999	0	
	Manual span calibration	%	50	300	100	
	Zero tension setting	N, × 10 N	0	2000	0	
Ter	sion display filter time constant	S	0.2 te	o 4.0	2.0	
Ter	sion output filter time constant	S	0.2 to	o 4.0	2.0	
Ма	nual setting value 1	%	0	100	20	
Ма	nual setting value 2	%	0 100		20	
Тар	er ratio (internal reel diameter)	%	0	80	0	
Тар	er ratio (external reel diameter)	%	0	100	0	
Ga	in 1	%	5	400	100	
Ga	in 2	%	5	400	100	
Sto	p timer	S	0.0	30.0	0.0	
Sto	p gain	%	5	400	100	
We	ak excitation setting value	%	0	50	0	
Ē	Proportional gain	%	0	100	50	
Control gain	Integral time	%	1	100	50	
ontro	Addition gain	%	0	100	0	
ö	Addition dead band width	%	0	50	50	
_	MI1 contact input setting				None	
Selection item	MI2 contact input setting	-	Output memory, output ON/OFF, ma output gain 1, output gain 2	anual output 1, manual output 2,	None	
tion	MI3 contact input setting				None	
elec	Al1 analog input setting		Tension setting, taper ratio, reel dia	meter	None	
S	Al2 analog input setting	-	manual output setting 1, manual ou		None	
Ext	ended screen setting 1		10	53	0	
Ext	ended screen setting 2	-	10	53	0	
Pa	ssword setting	-	0	30000	0	

External connection

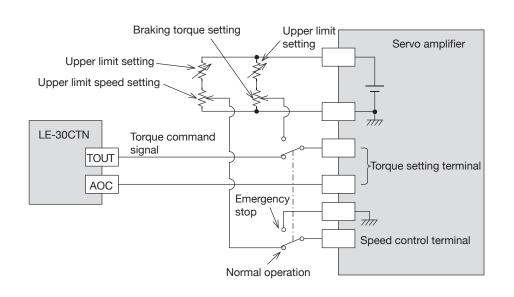
• Terminal layout

L	-		•	Ν	1		•			•	Z	Т		•	Ρ	Ρ	Μ	IC	
		•		•		•		•	•	•	•	Ζ	Т	•	•	Р	Ν	RL	JN

Μ	1	Μ	13	+5	V	Al	1	G	٦L	RE	D	BL	K	GF	RR	AC	DC	AC	D1	
	Μ	12		•	AI	С	AI	2	Wł	Ŧ	S	G	S	G	WF	łR	TOL	Л	•	

Common Item

Common Item


• Example of combination with servo motor

By using the output signals [TOUT]-[AOC] for control, these controllers can be used in combination with an AC servo motor that allows torque control.

• Wiring (Example)

The following signals are input to the torque setting terminal and speed limit terminal of the servo amplifier.

	Torque setting terminal	Speed control terminal
During operation and normal stop	[TOUT]-[AOC] signal of LE-30CTN	Variable resistor signal for upper limit speed setting
During emergency stop	Variable resistor signal for braking torque setting	0 V

Setting

Make the following settings for the servo motor.

(1) Control method setting Set the torque control method.

(2) Output torque setting Make settings so that the output torque of the servo motor is the rated torque when the torque command signal is 5 V.

LE-40MTA(-E)/LE-40MTB(-E)

tension controller

Order production from October 202

End of March 2024 Scheduled completion of production

Feedback control

The LE-40MTA(-E)/LE-40MTB(-E) tension controller is used in combination with the LX7-F/LX-TD tension detector to automatically control the material tension during unwinding, intermediate shaft, and winding of long materials.

Such actuators as powder clutches/brakes, servo motors (torque mode), and air clutches/brakes can be used with these controllers, and they come with a built-in clutch amplifier and auxiliary power supply for clutches/brakes that operate on 24 V DC.

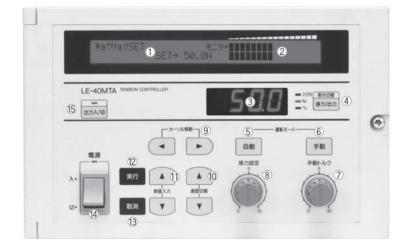
Features

- Operates on a wide range of supply voltage from 100 V to 240 V AC.
- It uses 2 types of displays, large LCD (2 lines × 40 characters) and an LED (7 segments). It features easier viewing with the simultaneous display of tension and output, display of tension in bar graph format, and display of control status in characters.
- Auto zero/span adjustment method is adopted, eliminating the need for adjustment. Automatic adjustment of control gain is possible.

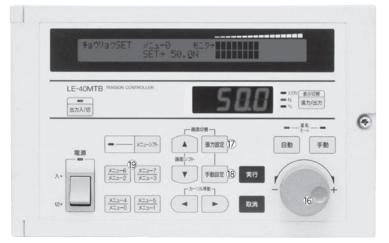
• LE-40MTA(-E): Standard type

Since variable resistors are adopted, the customer can operate intuitively and easily as before.
 LE-40MTA: Japanese version
 LE-40MTA-E: English version

• LE-40MTB(-E): High-function type

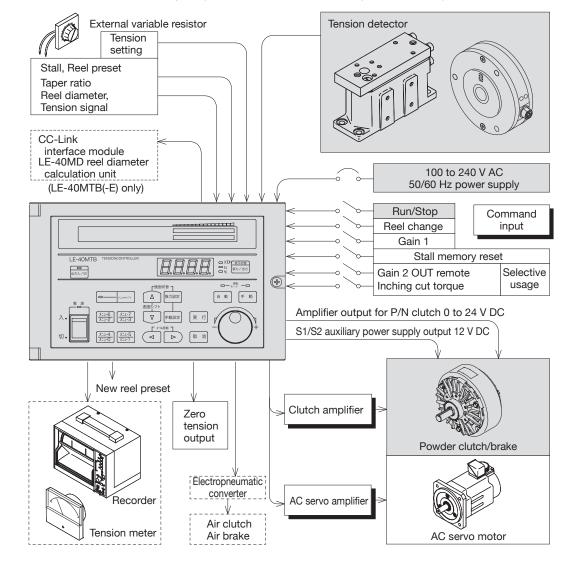

- The rotary type pulser makes it easy to set numerical values.
- Connection with CC-Link is possible.
 Uses FX2N-32CCL (Interface block), LE-60EC (Extension block extension cable), and FX2N-CNV-BC (Connector conversion adapter).
- Setting values can be selected on the menu screen.
 Seven kinds of material names can be registered, eight kinds of menus can be used to register the setting values for each material, and the setting values can be read by one-touch operation.
 LE-40MTB: Japanese version
 LE-40MTB-E: English version

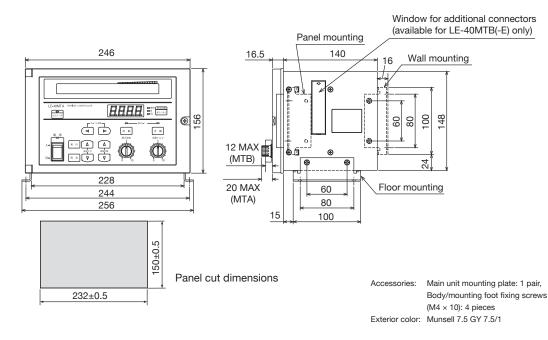
Clutch


Meter/Tension Amplifier

Panel screen configuration

• LE-40MTA


• LE-40MTB

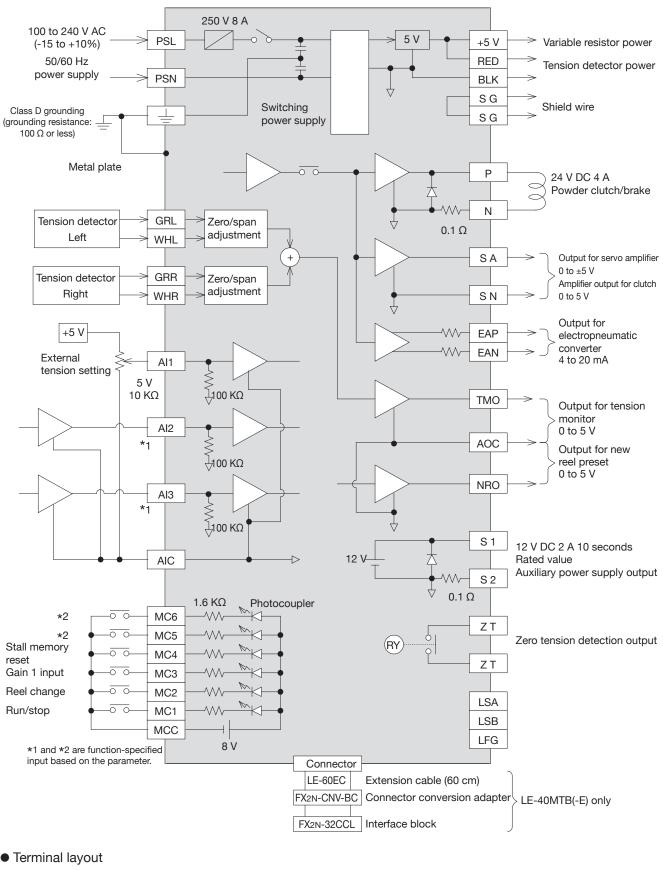

(1) LCD display	$\mbox{2-row}\times\mbox{4-digit}$ LCD display. Monitors setting values and control states, and displays control states, etc.
(2) Bar graph	Displays the percentages (%) of control tension and tension setting as a bar graph on a part of the LCD display.
(3) LED display	Displays the tension and output values. The switch in (4) is used to switch the display mode.
(4) LED display switch	Switches the display mode on the LED.
(5) (6) Mode switch	Automatic/manual mode switch.
(7) Manual torque setting variable resistor (type A)	Sets the output torque during manual control.
(8) Tension setting variable resistor (type A)	Sets the control tension in automatic control.
(9) Cursor movement switch	Moves the cursor or scrolls the screen horizontally on the LCD setting display screen.
(10) Screen change switch	Switches the screen to the next screen or the previous screen on the LCD setting display screen.
(11) Value input switch (type A)	Sets the setting values other than tension setting and manual torque setting.
(12) (13) Execution/cancellation switch	Executes/cancels the constant setting operation, or decides/cancels the setting value.
(14) Power supply	
(15) Output ON/OFF switch	
(16) Pulser dial (type B)	Used to set various setting values. Turning it clockwise increases the number and turning it counterclockwise decreases the number.
(17) Tension setting switch (type B)	Switches the LCD setting display screen to the tension setting screen by one-touch operation.
(18) Manual setting switch (type B)	Switches the LCD setting display screen to the manual setting screen by one-touch operation.
(19) Menu select switch (type B)	Used to select a menu number when registering a setting value or reading the registered setting.

Externally connected devices

Some of the devices that can be connected to the input/output terminals of this model of tension controller include the following. Tension detector, actuator, and some of the signal input switches are essential to the system; other components are connected as necessary.

Outline dimensions (mm)

Fension Controller


Specifications

Ite	m	Specifi	cations								
	Input	100 to 240 V AC (-15 to +10%), 50/60 Hz, Power consumption: 400 VA, Power supply fuse: 250 V 8 A built-in, Inrush current of 50 A 10 ms									
Power supply	Output	Auxiliary power supply									
Contact signal	Input	Run/stop ON = Reel change signal OFF = Gain 1 operation signal Gain 5 Stall memory reset signal General-purpose contact input signal (2 points) Gain 2 operation, inching, lower torque limit at mater Switching between inside and outside of tension set (*: Applicable to LE-40MTB(-E) only)	8 V DC 4 mA/1 point Internal power feeding								
	Output	Zero tension detection outputSet value 0 to 1999 N	N (1999 × 10 N), 250 V AC, 0.5 A o	or 30 V DC, 0.5 A							
		2 tension detectors input······ 1 or 2 LX-TD/LX7-F t should be used in a	pair).	type tension detector							
Analog signal	Input	External tension setting	Recommended variable resistor 5 V 10 kΩ								
	Output	Clutch amplifier output 24 Control signal output - In powder mode······· 0 to - In AC servo mode ······ 0 to New reel preset output 0 to Tension monitor output 0 to Electro-pneumatic regulator control signal output ···· 4 to	$k\Omega$ or more $k\Omega$ or more $k\Omega$ or more $k\Omega$ or more 70 Ω or less								
Wei	ght	Approx. 3.5 kg									
Installatio	n method	Floor surface, wall surface, and panel mounting									
		LE-40MTA (-E)	LE-40MTA (-E) LE-40MTB (-E)								
Major fu	unctions	Display method: LCD (2 rows × 40 digits) + 7-segment LED Tension display: 1 to 1999 N (digital + bar graph), output % display Control functions: Start/stop timer, stop gain, torque correction at acceleration/deceleration, taper control, mechanical loss correction, new reel preset setting, auto zero/span adjustment, auto gain adjustment, cut torque setting									
		Digital value setting: Setting with Up/Down keys Tension setting: Use of variable resistor	bulser Pr								
	Operating ambient temperature	0 to 40°C									
	Operating ambient humidity	35 to 85% RH (no condensation)									
	Vibration resistance	10 to 55 Hz, 0.5 mm (up to 4.9 m/s ²), 2 hours each in 3 a	xial directions								
	Impact resistance	98 m/s ² 3 times each in 3 axial directions	98 m/s ² 3 times each in 3 axial directions								
Environmental specifications	Power noise withstand level	Noise voltage 1000 Vp-p, using a noise simulator with noise width of 1 μ s and frequency of 30 to 100 Hz									
	Withstand voltage	1500 V AC for 1 minute (between all terminals together a	nd the grounding terminal)								
	Insulation resistance	500 V DC, 5 M $ \Omega$ or more when measured with insulation	resistance tester								
	Grounding	Class D grounding, grounding resistance 100 Ω or less									
-	Operating	Class D grounding, grounding resistance 100 Ω or less Environment must be free of corrosive gases, flammable gases as well as conductive dust, and must have low									

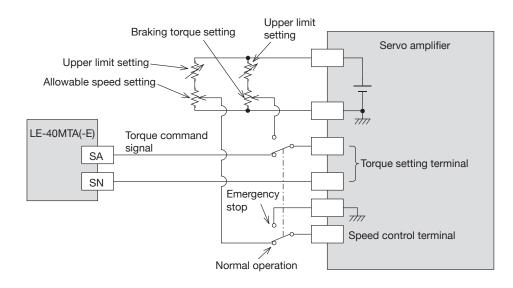
Parameter list

	Cotting			11-24	Setting	Initial Oattin			
	Setting	Se	etting value	Unit	Minimum	Maximum	Initial Setting		
_	- · ·	Tension set	tting value (N)	N	0.1, 1, 10 to ful	200			
	Tension setting	Tension set	tting value (× 10 N)	Ν	0.01, 0.1, 1 to fu	Ill scale tension	20.0		
		Full scale v	alue	-	1	1999	500		
	Full scale tension	Decimal po	bint (N)	-	Select 0.1,	1.0, or 10.	× 1		
		Decimal po	oint (× 10 N)	-	Select 0.01	, 0.1, or 1.	× 0.1		
lon		Zero adjust	tment	-	0	0	0		
Tension	Tension detector			Ν	1 digit to full	scale tension	500		
		Span adjus	tment target value	× 10 N	(1/3 of full scale v	/alue is required)	50.0		
	Ciltar.	Display tim	e constant	S	0-1+ 1/4 1	/0 1 0 · 1	1/2		
	Filter	TMO outpu	it time constant	S	- Select 1/4, 1/	/2, 1, 2, or 4.	1/2		
	Zero tension detection	Zero tensio	on setting (N)	Ν	0	1999	0		
output		Zero tensio	on setting (× 10 N)	× 10 N	0	199.9	0		
Ла	nual setting	Manual set	value	%	0	100	20		
	Lincer line terrer	Taper ratio (internal ree	el diameter)	%	0	80	0		
Taper	Linear line taper	Taper ratio (external re	el diameter)	%	0	100	0		
		Corner 1 to	9 4	mmφ	0	2000	0		
	Broken line taper	Taper 1 to	4	%	0	100	0		
Ľ	Stall	Stall setting	g value	%	0	100	20		
Start	Timer	Start timer		S	0.0	10.0	4.0		
Output gain		Gain 1		%	5	400	100		
Ju	tput gain	Gain 2		%	5	400	100		
		New reel p	reset value	%	0	100	50		
le	w reel/old reel switching	Preset time	er	S	0.0	30.0	4.0		
		Cutting tor	que	%	0	100	10		
		Stop timer		S	0.0	100.0	6.0		
Sto	op control	Stop gain		%	5	400	100		
		Stop bias		%	0	50	0		
		Reel A	Powder mode	%	0	100	0		
	-hander land	setting	AC servo mode	%	-50	100	0		
/le	chanical loss correction	Reel B	Powder mode	%	0	100	0		
		setting	AC servo mode	%	-50	100	0		
		Minimum c	liameter setting	mmφ	0	2000	100		
۱e	el diameter	Maximum	diameter setting	mmφ	Minimum set diameter	2000	1000		
		Proportion	al gain	%	0	100	50		
IL		Integral tim	e	%	1 100		50		
Control gain	Manual setting	Dead band	gain	%	0	100 - proportional gain	0		
ວິ		Dead band	width	%	0	50	50		
	Auto gain setting	Addition to	rque	%	0	100	20		

External connection

PSL	PSI	N	ZT	Ρ	SI	MC	СМС	22 M	C4 M	C6 +	⊦5V	A	12	GRI	RE	DE	3LK	GRR	SA	EA			RO L	SA
	<u> </u>	•	Z	1 [۱ :	52 N	/IC1	МС3	MC5	AIC	Al1		Al	3 V	VHL	SG	S	G WI	HR	SN	EAN	тмс) LSB	LFG

Application example


• Combined use with an AC servo motor

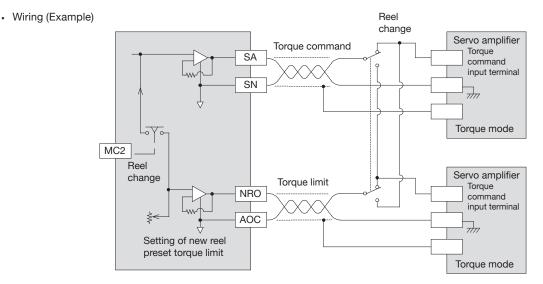
By using the output signals [SA]-[SN] for control, these controllers can be used in combination with an AC servo motor that allows torque control.

• Wiring (Example)

The following signals are input to the torque setting terminal and speed limit terminal of the servo amplifier.

	Torque setting terminal	Speed control terminal
During operation and normal stop	[SA]-[SN] signals from the tension controller	Variable resistor signal for upper limit speed setting
During emergency stop	Variable resistor signal for braking torque setting	0 V

Setting

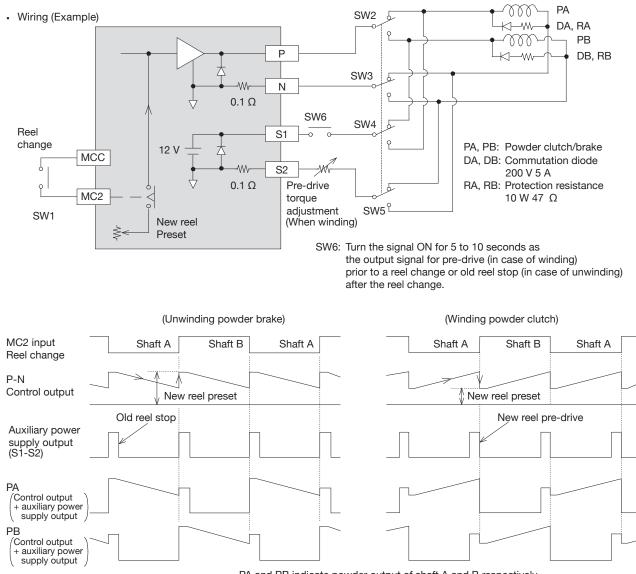

When using these controllers in combination with the servo motor, secure the following settings for the servo motor.

- (1) Control method setting...... Set the torque control method.

• 2-shaft switching with an AC servo motor

Servo motor torque is controlled by sending the control output from the SA terminal to the servo amplifier torque control input of either shaft A or B with the reel change switch.

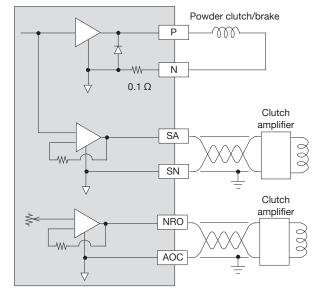
To stop the original shaft, the speed control signal is brought down to zero and a separate torque limiting input is sent to the shaft. The NRO output limits the torque during pre-drive operation and controls the servo motor speed input (VC) to keep the pre-drive rotation speed in proportion with the main shaft speed.


Clutch

ension Controller

Common

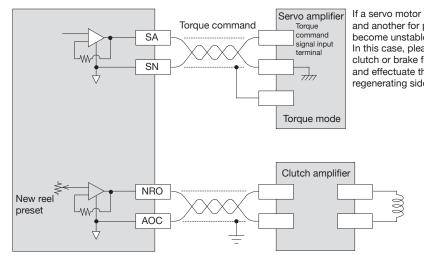
• 2-shaft switching with a powder clutch/brake


Connect the contact signal that was interlocked with the reel change during a 2-shaft operation to MC2. When this input signal changes from OFF to ON or ON to OFF, the control output is reset to the new reel preset value, and automatic control is performed after the preset timer is up. SW1, SW2, and SW3 are switched simultaneously by an interlocked operation with the cutter operation. The auxiliary power supply (S1-S2 output) is a short-time rated output of 10 seconds.

PA and PB indicate powder output of shaft A and B respectively.

• Intermediate control with a powder clutch/brake

• Wiring (Example)


Connect a powder clutch (out-feed)/brake (in-feed) (24 V DC, 4 A or less).

Install externally an amplifier available for an 80 V DC clutch by using a control output (SA output) when a 80 V DC series power clutch/brake is used.

When an auxiliary brake (out-feed) or clutch (in-feed) for the countershaft is used, a manual control of the output can easily be performed by using the new reel preset output (NRO output).

Intermediate control with an AC servo motor

• Wiring (Example)

If a servo motor is used for regenerating and another for powering, control may become unstable near zero. In this case, please install an auxiliary clutch or brake for the intermediate shaft and effectuate the control output to the regenerating side or powering side only.

Fension Controller

LE-40MD reel diameter calculation unit

Using this unit in combination with the LE-40MTB or LE-40MTB-E tension controller enables more advanced tension control. (This product cannot be used alone.)

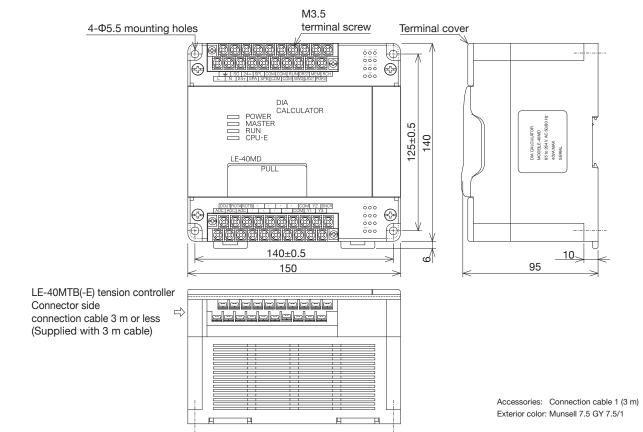
Features

• Precise tightening by high-precision taper control

Precise calculation of reel diameter based on pulse ratio calculation allows high-precision taper tension control such as stage taper control.

 Allows constant slip control of the powder clutch for winding.

When winding with an inverter and a powder clutch, performing constant slip control of the powder clutch using the reel shaft rotation speed signal greatly reduces heat dissipation. It has various advantages compared with using the powder clutch at a fixed input rotation speed.

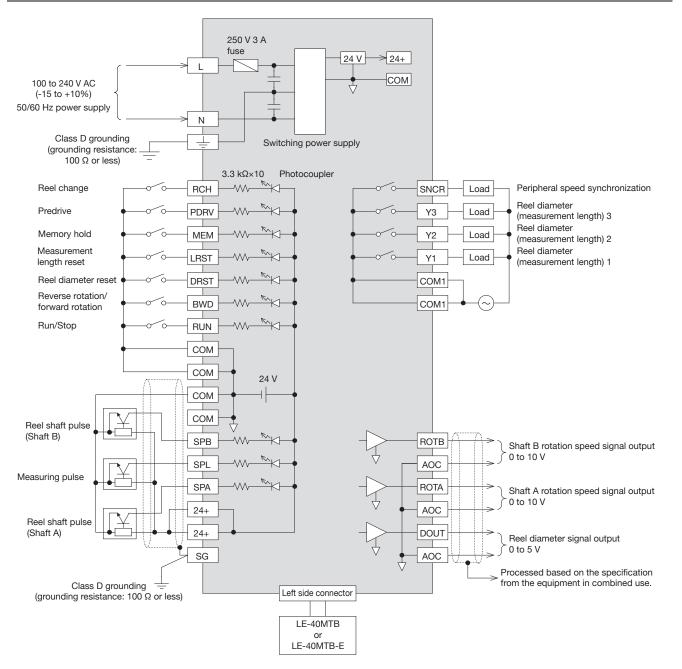

- The selection of a powder clutch with a smaller rated torque may be possible.
- The life of the powder clutch may be significantly extended.
- Allows for easy 2-shaft control

By using the peripheral speed sync signal and reel rotation speed signal, it is easy to switch between pre-drive control and 2-shaft control.

• Timing detection of reel diameter and length measurement is possible.

3 contact points are provided for connection to various timing detectors.

Outline dimensions (mm)



Specifications

Ite	em	Specifications									
Power supply Output		100 to 240 V AC (-15 to +10%), 50/60 Hz, Power consumption: 40 VA, Power supply fuse: 250 V 3	A built-in								
Power supply	Output	Sensor power supply24 V DC, 150 mA or less									
Pulse signal	Input	Reel shaft pulse input·····Response frequency 500 Hz or less (for reel A, reel B) Measuring pulse input·····Response frequency 20 kHz or less	24 V DC, 7 mA/1 point Open collector type								
Contact signal	Input	Run/stop ON: Run, OFF: Stop Forward/reverse ON: Reverse rotation, OFF: Forward rotation Reel diameter reset Approx. 0.5 second one-shot input Length measurement reset Approx. 0.5 second one-shot input Memory hold Reel diameter data held during ON (length measurement data is updated) Pre-drive Pre-drive rotation speed command output during ON Reel change OFF: Reel B, ON: Reel A	24 V DC, 7 mA/1 point Internal power feeding								
	Output	Length measurement signal (3 points) ······· ON at setting value or more Reel diameter signal (3 points) ······ ON at setting value or more Peripheral speed synchronization signal····· ON when the pre-drive rotation speed command value is synchronized with the line speed equivalent value.	250 V AC, 0.5 A/1 point or 30 V DC, 0.5 A/1 point								
Analog signal	Output	Reel diameter signal \cdots 0 to 5 V DC, Load resistance: 1 k Ω or more Rotation speed signal \cdots 0 to 10 V DC, Load resistance: 2 k Ω or more (for reel A, reel B)									
We	ight	Approx. 1.2 kg									
Installatio	on method	DIN rail, wall surface									
	Reel diameter	ф50 to 2000 mm									
Cotting range	Length measurement	0 to 32,767 m									
Setting range	Target line velocity	5 to 1000 m/min									
	Material thickness	2 µm to 10 mm									
Major fi	unctions	Reel diameter calculation LE-40MTB(-E) tension controller taper control, reel diameter monitor, etc. Length measurement calculation Reel change timing detection, etc. Reel shaft rotation speed calculation Winding powder clutch slip rotation speed control, etc. Peripheral speed synchronization detection Reel change timing detection, etc.									
	Operating ambient temperature	0 to 55°C									
	Operating ambient humidity	35 to 85% RH (no condensation)									
	Vibration resistance	10 to 55 Hz, 0.5 mm (up to 19.6 m/s ²), 4.9 m/s ² when DIN rail is installed), 2 hours each in 3 axial directions									
	Impact resistance	98 m/s ² , 3 times each in 3 axial directions									
Environmental specifications	Power noise withstand level	Noise voltage 1000 Vp-p, using a noise simulator with noise width of 1 μ s and frequency of 30 to 100 Hz									
	Withstand voltage	1500 V AC for 1 minute (between all terminals together and the grounding terminal)									
	Insulation resistance	500 V DC, 5 M Ω or more when measured with insulation resistance tester									
	Grounding	Class D grounding, grounding resistance 100 Ω or less									
	Operating environment	Environment must be free of corrosive gases, flammable gases as well as conductive dust, and m dust. Free from rain and water drops.	ust have low levels of								

External connection

Terminal layout

	Ē	SG	24+	SPL	COM	COM	RUN	DRST	MEM	RCH	DO	UT RO	TA RO	тв	•	•	•	• (COM1	Y2	SNCF
L	١	1 24	+ SP	A SPE	B COI	м со	M BW	/D LR	ST PD	RV	AOC	AOC	AOC	•	•	•	•	CO	V1 \	/1	Y3

LD-30FTA tension controller

Order production from April 2024 End of September 2025 Scheduled completion of production

Open-loop control

The LD-30FTA tension controller is an open-loop controller that operates on an integrated thickness monitoring method. This method first sets the initial diameter and material thickness to the control device and calculates the current reel diameter by subtracting (when unwinding) the material thickness from or adds (when winding) to the initial diameter every rotation of the winding reel shaft.

(A proximity sensor for rotation detection is attached in advance to the winding reel shaft.)

The calculation result is used to generate a voltage output of 0 to 24 V to the powder clutch/brake as an actuator and to generate a command voltage of 0 to 5 V to the servo amplifier.

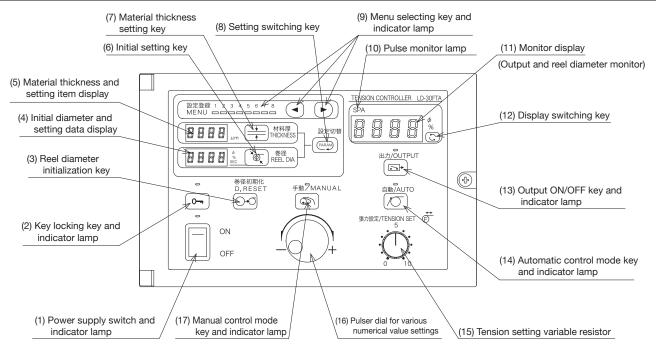
Features

- Easy control and adjustment of tension with simple operation
 - Automatic control is possible by setting only the tension, material thickness, and initial diameter.
 - Supports a wide range from 100 V to 240 V AC.
 - A wide range of material thickness and initial diameter can be set.
 - Backup power function that stores the current reel diameter even if the power is turned off.
 - Supports various types of actuators such as an AC servo.

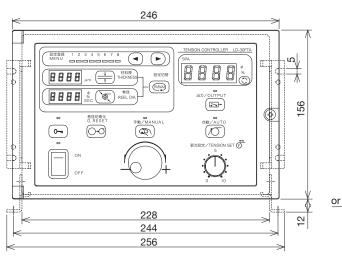
Advanced function mode for various applications

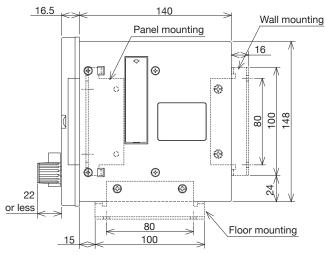
- Winding taper control is also possible.
- Inertia compensation function during acceleration/ deceleration.
- Function for correction of torque nonlinearity of clutch/brake.
- Mechanical loss correction function.

• Ease of use


- Display of functions in Japanese, English, and pictograms.
- Numerical value setting by dial operation.
- High-function/easy mode switching function with built-in DIP switch.
- 8 types of setting value storage function by menu Up to 8 types of specific operation constants (such as material thickness, initial diameter, and taper ratio) can be stored.
- Key locking key for prohibiting erroneous operation and display of invalid function.

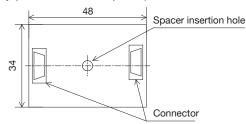
Ultrasonic sensor and touch lever input


Installing an optional analog input board (LD-30FTA-1AD) enables input from an ultrasonic sensor and touch lever. This eliminates the need for setting the material thickness and initial diameter for each material.



Panel screen configuration

Outline dimensions (mm)

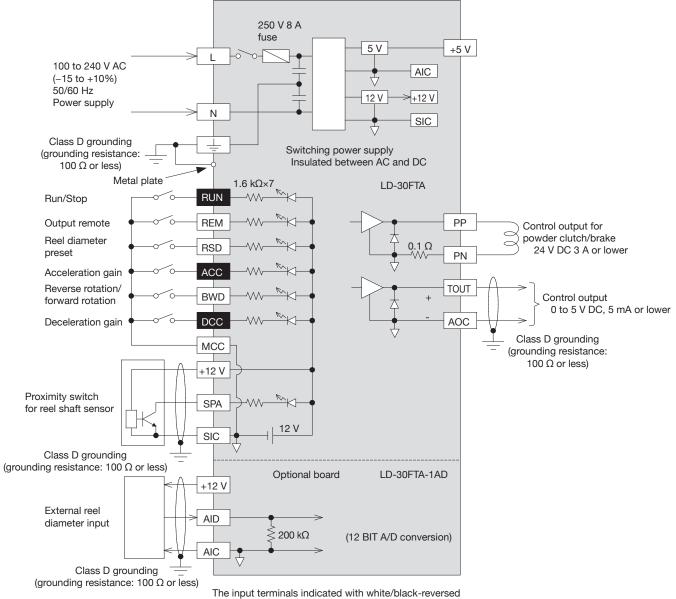


Accessories: Main unit mounting plate: 1 pair Body/mounting foot fixing screws (M4 \times 10): 4 pieces Exterior color: Munsell 7.5 GY 7.5/1

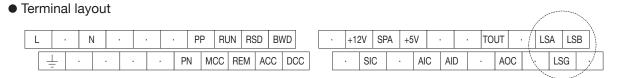
Panel cut dimensions

LD-30FTA-1AD option board (separately provided with a spacer)

	Item	Specifications					
Power supply	Input	100 to 240 V AC (-15 to +10%), 50/60 Hz, Power consumption: 300 VA, Power Inrush current: 30 A 300 ms	supply fuse: 250 V 8 A built-in,				
	Output	Sensor power supply 12 V DC, 100 mA or less					
Pulse signal	Input	Reel shaft pulseOpen collector signal: 12 V DC, 7 mA, Response 1, 2, 4, or 8 pulses can be set per rotation of reel shaft.	e frequency: 300 Hz or less				
Contact signal	Input	Run/stop ON: Run, OFF: Stop Output remote ON: Output generation, OFF: Output stop Reel diameter reset Reset to initial diameter during ON. Acceleration gain Acceleration gain is valid during ON. Forward/reverse ON: Reverse rotation, OFF: Forward rotation Deceleration gain Deceleration gain is valid during ON.	12 V DC, 7 mA/1 point Internal power feeding				
Analog signal	Input	External reel diameter input0 to 10 V (when an LD-30FTA-1AD type option b Ultrasonic sensor, touch lever potentiometer, etc.	board is used)				
	Output	Clutch amplifier output ··································					
V	Veight	Approx. 3.5 kg					
Installa	tion method	Floor surface, wall surface, and panel mounting					
	Operating ambient temperature	0 to 40°C					
	Operating ambient humidity	35 to 85% RH (no condensation)					
	Vibration resistance	10 to 55 Hz, 0.5 mm (up to 4.9 m/s ²), 2 hours each in 3 axial directions					
Environmental	Impact resistance	98 m/s ² 3 times each in 3 axial directions					
specifications	Power noise withstand level	Noise voltage 1000 Vp-p, using a noise simulator with noise width of 1 μs and fi	requency of 30 to 100 Hz				
	Withstand voltage	1500 V AC for 1 minute (between all terminals together and the grounding termi	nal)				
	Insulation resistance	500 V DC, 5 M Ω or more when measured with insulation resistance tester					
	Grounding	Class D grounding, grounding resistance 100 Ω or less					
	Operating environment	Environment must be free of corrosive gases, flammable gases as well as conducted levels of dust. Free from rain and water drops.	uctive dust, and must have low				
Major	functions	Reel diameter detection ··· Integrated thickness calculation method, external analog signal (ultrasonic sensor, etc Tension control ···········Constant tension control, taper control (straight line) Control function ··········Stop timer, stop gain, stop bias, acceleration/deceleration gain, mechanical loss correction, weak excitation function torque Nonlinear correction ········Polygonal line approximation corrections in 5 steps. Setting by correction number inp for each clutch/brake.					

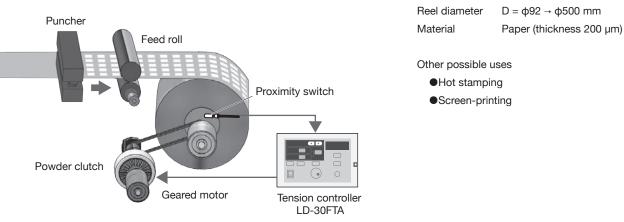

Parameter list

Ostiliza item	Settin	g item	la Malanakaa	11=4	Europhian mode
Setting item	Minimum	Maximum	Initial value	Unit	Function mode
Tension setting	0	100	-	%	Easy/high-function
Material thickness setting	1/0.1	9,999/999.9	50	μm	Easy/high-function
Initial diameter setting	1	2000	500	mm	Easy/high-function
Taper setting	0	100	100	%	High-function
Stop timer setting	0.0	100.0	0.0	sec	High-function
Stop gain setting	5	400	100	%	High-function
Stop bias setting	0	50	0	%	High-function
Deceleration gain setting	5	400	100	%	High-function
Acceleration gain setting	5	400	100	%	High-function
Mechanical loss setting	0	50	0	%	High-function
Weak excitation setting	0	50	0	%	High-function
Setting the number of reel shaft pulses	1, 2,	4, 8	1	-	High-function
Nonlinear correction setting	0	200	0	-	High-function
Minimum diameter setting	1	Maximum diameter setting value	100	mm	Easy/high-function
Maximum diameter setting	Minimum diameter setting value	2000	500	mm	Easy/high-function


Clutch Amplifier

Tension Meter/Tension Amplifier

External connection


The input terminals indicated with white/black-reversed characters are effective only in the high-performance mode.

LSA, LSB, and LSG are not used.

Using a proximity switch

This is a control example of the winding part for intermittent feed to enable punching with the material feed stopped. In spite of intermittent feed, the take-up motor is continuously rotating and the clutch continues to apply tension while slipping.

1. DIP switch setting (required only at initial setting; not required during normal operation)

	1	2	3	4	5	6	7	8			1	2	3	4	5	6	7	8
ON	Unwinding	×1	Disabled	Disabled		Normal	Easy	Run		ON	Unwinding	×1	Disabled	Disabled		Normal	Easy	Run
DIP switch	Control reel	Thickness unit	Reel diameter input	Output remote	(Unavailable)	Memory initialization	Function mode	Operation mode	\bigcirc	DIP switch	Control reel	Thickness unit	Reel diameter input	Output remote	(Unavailable)	Memory initialization	Function mode	Operation mode
OFF	Wind	×0.1	Enabled	Enabled		Initial- ization	High- func- tion	Adjust- ment		OFF	Wind	×0.1	Enabled	Enabled		Initial- ization	High- func- tion	Adjust- ment

(Initial setting status)

* For normal operation, set the DIP switch for the operation mode to [Run].

2. Maximum diameter setting

(Required only at initial setting; not required during normal operation)

- (1) Select the maximum diameter with the setting switching key (8) and enter " $\varphi500$ " with the pulser.
- (2) Set the operation mode of the DIP switch to "RUN," and turn the power off and turn it on again.

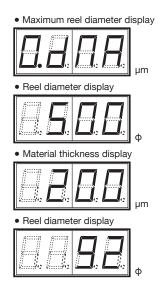
3. Setting procedure

(Setting is required only when the material is changed.)

- (1) Press the "Material thickness Setting" key (7), and enter the material thickness "200 μm " with the pulser.
- (2) Press the "Initial setting" key (6), and enter the reel diameter "\$\$\phi\$2" with the pulser.

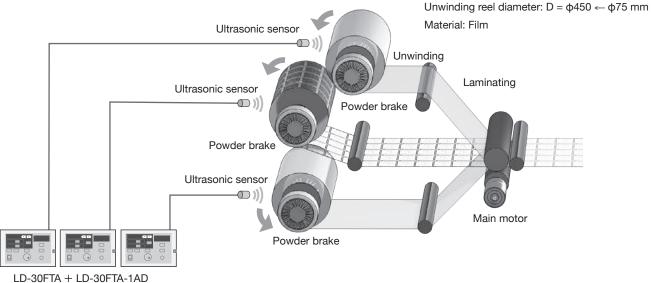
(3) Press the "Reel diameter initialization" key (3).

4. Test run procedures


(Required only at initial setting; not required during normal operation)

(1) Press the "Manual Mode Selection" key, and turn on the output ON/OFF switch.

(2) Check the functions of the connected devices such as the motor and PLC.


5. Automatic operation procedure

- (1) Press the "Automatic Control Mode Selection" key.
- (2) Adjust the tension with the tension-setting variable resistor.

Using an ultrasonic sensor

Winding laminating film for the upper and lower sides of the base material. Tension is kept constant at the laminating area to prevent warps and wrinkles, and to improve bonding during lamination. An open-loop type tension controller is used because there is no space for a tension detector. The reel diameter is detected by the ultrasonic sensor, so the initial diameter and wire diameter do not need to be set.

1. DIP switch setting (required only at initial setting; not required during normal operation)

	1	2	3	4	5	6	7	8			1	2	3	4	5	6	7	8
ON	Unwinding	×1	Disabled	Disabled		Normal	Easy	Run		ON	Unwinding	×1	Disabled	Disabled		Normal	Easy	Run
DIP switch	Control reel	Thickness unit	Reel diameter input	Output remote	(Unavailable)	Memory initialization	Function mode	Operation mode	\Box	DIP switch	Control reel	Thickness unit	Reel diameter input	Output remote	(Unavailable)	Memory initialization	Function mode	Operation mode
OFF	Wind	×0.1	Enabled	Enabled		Initial- ization	High- func- tion	Adjust- ment		OFF	Wind	×0.1	Enabled	Enabled		Initial- ization	High- func- tion	Adjust- ment
(Initial :	setting	status)								* For no	ormal ope	eration, s	set the D	IP switch	n for the	operation	n mode t	o [Run].

(Initial setting status)

2. Teaching operation

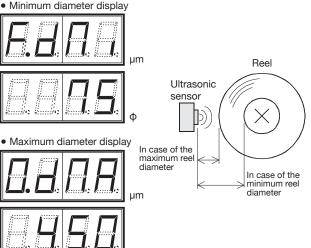
(Required only at initial setting; not required during normal operation)

- (1) Select the minimum diameter with the setting switch key, set the minimum diameter "\$\$\phi75" with the pulser, install the smallest diameter winding reel (\$\$\phi75\$), and press the reel diameter initialization key.
- (2) Select the maximum diameter with the setting switch key, set the maximum diameter "\$\phi450" with the pulser, install the maximum diameter winding reel, and press the reel diameter initialization key.
- (3) Set the operation mode of the DIP switch to "RUN," and turn the power off and turn it on again.

3. Manual operation procedures

(Required only at initial setting; not required during normal operation)

- (1) Press the "Manual Mode Selection" key, and turn on the output ON/OFF switch.
- (2) Check the functions of the connected devices such as the motor and PLC.


4. Automatic operation procedure

- (1) Press the "Automatic Control Mode Selection" key.
- (2) Adjust the tension with the tension-setting variable resistor.

Clutch Amplifie

Common Item

LD-05TL tension controller

Order production from April 2024 End of September 2025 Scheduled completion of production

Open-loop control

The LD-05TL tension controller receives power from the 24 V DC general-purpose stabilized power supply and controls unwinding/winding tension by inputting an analog system reel diameter signal such as a potentiometer linked with the touch lever. Since the reel diameter signal processing block and the constant current (constant voltage) amplifier block are separated, it can be used only as an amplifier. This controller is used in combination with a powder clutch/brake of 24 V DC, 0.5 A or less.

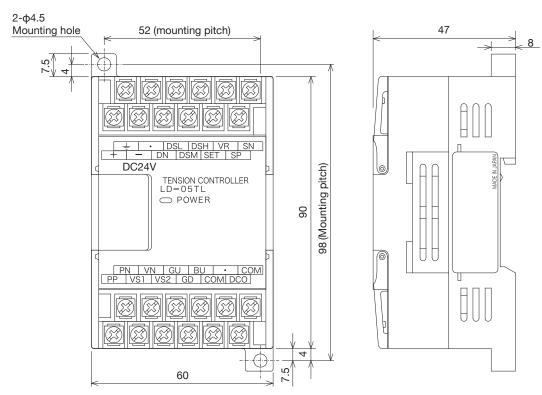
Features

Tension control using the touch lever

Tension control is enabled with the touch lever using the potentiometer. Automatic operation is enabled by only tension setting with the external variable resistor.

 Usable as a clutch amplifier such as for powder clutch/brake

This controller can be used as a clutch amplifier such as for powder clutch/brake by using a PLC or other kind of controller.


 Stable output characteristics against temperature fluctuation

Stable torque can be obtained by constant current control. (Constant voltage control is also usable.)

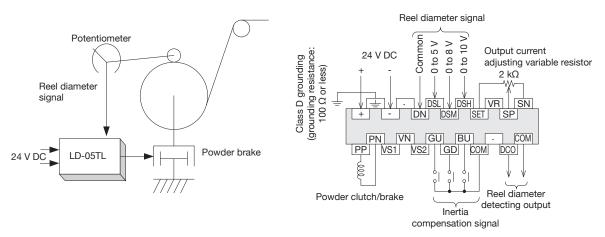
Not loose when stopped

The external contact signal enables inertia compensation such as powering up, powering down, and powering addition.

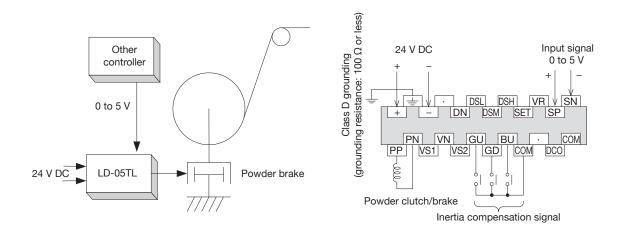
Outline dimensions (mm)

Exterior color: Munsell 0.08GY 7.64/0.81

Common


Tension Meter/Tension Amplifier

	Item		Specifications						
Pov	ver supply		24 V DC ±15%						
Ana	llog signal	Input	$ \begin{array}{c c} \mbox{Reel diameter signal} & $	eter and maximum diameter.					
		Output	ontrol output ·······For the tension setting signal 0 to 5 V Current output ·······0 to 0.5 A DC (in constant current control mode) Voltage output ······0 to 22 V DC (in constant voltage control mode)						
Cor	Input Contact signal		Output correction signal • For powering up ·········Output multiplication of Approx. 100% to 500% • For powering down·······Output multiplication of Approx. 0% to 100% • For powering addition ·····Approx. 0 to 0.1 A (in constant current control mode) Output addition of Approx. 0 to 4.4 V (in constant current control mode) Constant voltage/constant current switching signal	24 V DC, 7 mA					
		Output	Reel diameter detection output • ON when reel diameter equals or underruns the set value. Open collector output: 30) V DC, 0.2 A or less					
Wei	ght		Approx. 220 g						
Inst	allation method		Installed on wall with two M4 screws or installed on DIN rail (width: 35 mm)						
specifications	Operating ambi temperature	ient	0 to 55°C						
	Operating ambi humidity	ient	35 to 85% RH or less (no condensation)						
Environmental	Vibration resista	ance	10 to 55 Hz, 0.5 mm (up to 19.6 m/s ²), 2 hours each in 3 axial directions						
Envii	Operating envir	onment	Free from corrosive and flammable gases as well as dust. Free from rain and water drops.						


Note: Since the maximum output voltage of this product is approx. 20.5 V (85% of the rated voltage) or more when the power supply voltage is 24 V, and approx. 17.5 V (72% of rated voltage) or more when the power supply voltage is 20.4 V (24 V - 15%), select a clutch or brake with a sufficient torque margin.

External connection

• For control with a potentiometer attached to the touch lever

• For control with an external analog voltage signal as a clutch amplifier

LE-50PAU power amplifier

The LE-50PAU power amplifier is used for controlling exciting current such as for a powder clutch/brake. It is thus used as a clutch amplifier for a tension controller not incorporating a clutch amplifier or for controlling with the constant current control method.

2400

A 1000

- 00

STATES STATES

Features

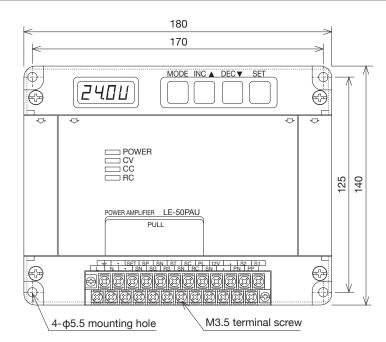
Constant current/constant voltage control method

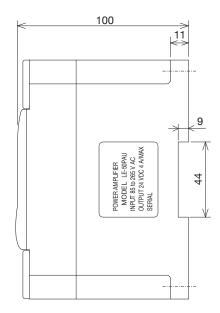
Both constant-current and constant-voltage control are supported (setting is switched with the built-in DIP switch). Constant-current control can eliminate the effects of torque fluctuations that are caused by a rise in powder clutch/ brake coil temperature and enable more stable tension control. In a system with multiple powder clutches/brakes that are connected in parallel in which the current is distributed by a variable resistor, constantvoltage control allows easier adjustment than constant-current control.

Nonlinear correction function of torque characteristics

The powder clutch/brake's non-linear transmission torque to exciting current characteristic is compensated in five stages. Fluctuation of tension caused by the change in reel diameter can be minimized.

Variable input signal level setting

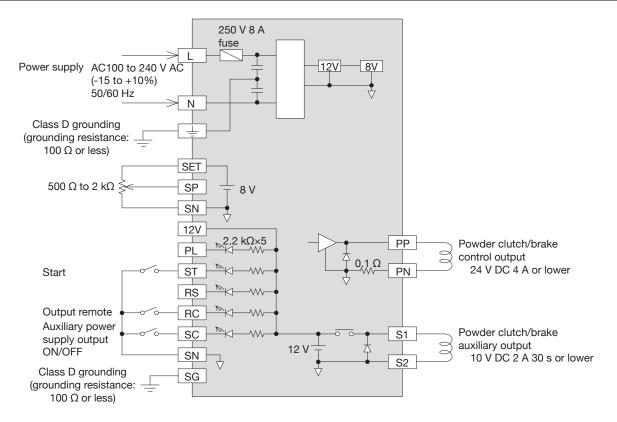

The input signal voltage level can be set to 0 to 5 V, 0 to 8 V, or 0 to Vmax (Vmax can be set to a level between 0.5 and 8 V).


Built-in setting display function

4-digit LED display, 4 push buttons, and 10-position dipswitches allow for easy setting of input signal level, output full-scale value, and nonlinearity compensation data.

Inertia compensation or output can also be displayed during control.

Outline dimensions (mm



Tension Controller

Powder Clutch/Brake

	Item		Specifications						
Power s	upply	Input	100 to 240 V AC (-15 to +10%), 50/60 Hz, Power consumption: 400 VA, Power supply fuse Inrush current: 50 A 300 ms	e: 250 V 8 A built-in,					
Powers	uppiy	Output	Power for variable resistor $\cdots $ 8 V DC Variable resistor resistance: 500 Ω to 2 k Ω Reel shaft sensor power supply \cdots 12 V DC, 15 mA or less						
Contact	signal	Input	Start ······ When turned off, the stop timer activates to perform inertia compensation operation. Output remote ······ON: Output generation, OFF: Output stop Auxiliary output ON/OFF ·······ON: Auxiliary output occurrence	12 V DC 5 mA/1 point Internal power feeding					
		Input	Control signal0 to 8 V, Internal resistance: 22 k Ω						
Analog S	Signal	Output	Power amplifier output ··································						
Weight			Approx. 2.5 kg						
Installati	ion method		Wall-mounted						
	Operating aml	pient temperature	0 to 55°C						
Suo	Operating aml	pient humidity	35 to 85% RH (no condensation)						
cati	Vibration resis	tance	10 to 55 Hz, 0.5 mm (up to 19.6 m/s ²), 2 hours each in 3 axial directions						
cific	Impact resista	nce	98 m/s ² 3 times each in 3 axial directions						
be	Power noise v	vithstand level	Noise voltage 1000 Vp-p, using a noise simulator with noise width of 1 µs and frequency o	f 30 to 100 Hz					
Environmental specifications	Withstand volt	age	1500 V AC for 1 minute	Between all terminals together and the					
ume	Insulation resi	stance	500 V DC, 5 M $ \Omega$ or more when measured with insulation resistance tester	grounding terminal					
/iro	Grounding		Class D grounding, grounding resistance 100 Ω or less						
En	Operating env	ironment	Environment must be free of corrosive gases, flammable gases as well as conductive dust, and must have low levels of dust. Free from rain and water drops.						

External connection

• Terminal layout

-		•	SET	S	P	S	N	ST	S	SC	Ρ	L	12	V		S	2	S	1
_	Ν		S	ŝN	S	G	R	s	SN	R	С	S	Ν		Ρ	N	Ρ	Ρ	

LD-40PSU power supply unit

E

End of September 2025 Scheduled completion of production

The LD-40PSU power supply unit is a constant voltage control type clutch amplifier for a powder clutch/brake that varies the voltage based on the variable resistor on the panel surface, signal voltage from the outside, external variable resistor, etc.

Features

External control signal (remote ON/OFF)

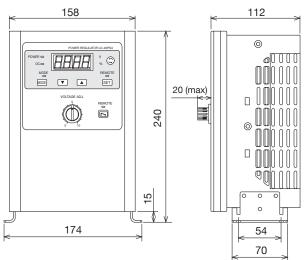
With an external signal of 0 to 5 V, output voltage can be controlled remotely in the range of 0 to 24 V.

Output ON/OFF function

Output can be turned on or off with the buttons on the panel or by using the external remote contact signal (RC signal).

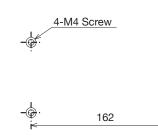
Inertia compensation function

In the manual tension control mode, stop timer operation and inertia compensated output in response to the RC signal are possible.

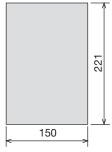

Load short-circuit protection/warning

The short-circuit protection circuit is triggered by a load shortcircuiting. The LED on the panel turns on when the circuit is triggered.

2-level output setting


This device can be set to supply 2 different levels of output voltage: one with and the other without RC input. The one without the RC input can be set to provide weak excitation, etc.

Outline dimensions (mm)



Mounting screw hole dimensions for floor mounting

-7

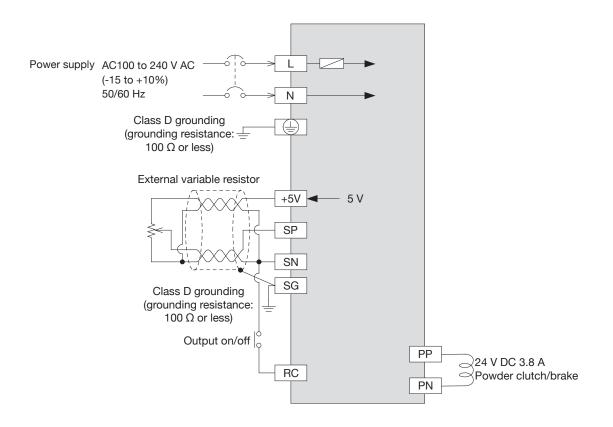
Panel cut dimension for panel mounting

O

54

-@∂.¥

π


Accessory: A pair of mounting plates 4 screws (M4 × 10) Exterior color: Munsell 7.5 GY 7.5/1 equivalent

Powder Clutch/Brake

Tension Controller

	Item	Terminal name	Specifications
Pow	er supply	L/N	100 to 240 V AC (+10%, -15%), 50/60 Hz Power consumption: 200 VA (at 24 V DC, 3.8 A)
out	Clutch amplifier output	PP/PN	24 V DC 3.8 A
Output	Power for variable resistor	+5 V/SN	5 V DC, 10 mA or less, External variable resistor: 0.5 to 2 k Ω
rt	Analog signal	SP/SN	Control input signal: 0 to 5 V DC
Input	Contact signal	RC/SN	Remote output ON/OFF, 12 V DC/mA internal power feeding
Weig	ht	Approx. 3 kg	
	Ambient temperature	-5 to +55°C	
	Ambient humidity	35 to 85% RH	(no condensation)
su	Vibration resistance	10 to 55 Hz, 0	.5 mm (up to 4.9 m/s ²), 2 hours each in 3 axial directions
catio	Impact resistance	98 m/s ² 3 time	es each in 3 axial directions
specifications	Power noise withstand level	Noise voltage	1000 Vp-p, using a noise simulator with noise width of 1 μs and frequency of 30 to 100 Hz
Environmental s	Withstand voltage		1 minute een all terminals together (excluding grounding terminal) and the ground terminal, and between all terminals uding grounding terminal) and the mounting bracket.
Enviro	Insulation resistance	5 MΩ or more terminal)	when measured with 500 V DC insulation resistance tester (between all terminals together and the grounding
	Grounding	Class D groun	ding (100 Ω or less, common grounding with strong power field not possible)
	Operating environment	Environment n	nust be free of corrosive or flammable gases as well as conductive dust, and must have low levels of dust.

External connection

• Terminal layout

L	•	Ν	•	\bigcirc	SG	RC	SN	SP	+5V	PN	PP

LD-10PAU power amplifier

The LD-10PAU-□ power amplifier is used for a dedicated clutch for controlling the exciting current of 24 V DC of small powder clutches/brakes, which are used in devices that perform tension control such as wire, paper, or film manufacturing machines.

The constant-current control method achieves constant output current and constant generated torque even if the coil resistance changes due to fluctuations in the clutch/ brake temperature to realize stable control with high precision.

Features

• Equipped with functions required in simultaneous multi-shaft control.

Small clutches/brakes are used not only for low tension single shaft control, but also for multiple-shaft simultaneous control using multiple units on one machine. This power amplifier compensates for the mechanical friction of each shaft and the difference in clutch/brake characteristics, which are problems caused in such control, and achieves stable control.

Space-saving installation by left/right close attachment to the DIN rails.

 16 types of output torque command and inertia compensation gain can be registered and switched

Sixteen types of output torque command value and inertia compensation gain value can be stored in the internal memory. Registration memory can be externally switched from the external digital binary ON/OFF signal, the FX PLC (only LD-10PAU-B compatible) connected to RS-485, or the display (GT2103).

 Allows selection of the output current command to suit the purpose of use.

(1) Analog input (0 to 5 V, 0 to 10 V)

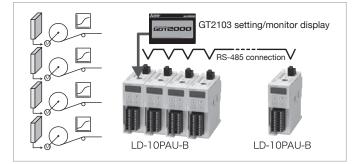
(2) Digital binary ON/OFF signal input (8 bits + Strobe)

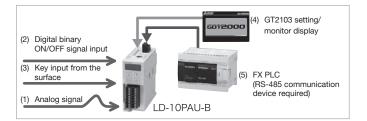
- (3) Key input from the surface \rightarrow Internal memory (16 types can be set)
- (4) Input from the graphic operation terminal → Internal memory (16 types can be set)
- (5) Input from the PLC (through RS-485 communication) → Internal memory

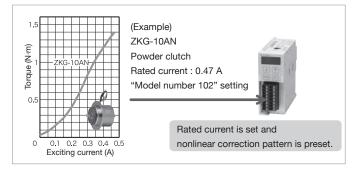
(16 types can be set, supported only in the LD-10PAU-B)

Incorporates a correction function for the nonlinear torque characteristics of clutches and brakes.

A nonlinear correction function corresponding to the current-torque characteristics of Mitsubishi Electric clutches and brakes is built in. The rated current and nonlinear correction initial value can be set simply by setting the model number of the clutch/brake to be connected.


Mitsubishi Electric display available for setting/monitoring


Mitsubishi Electric monitor display (GT 2103) can be connected.


(Connection cable: GT10-C□□R4-8P□)

For the sample screen data for the GOT, consult your local Mitsubishi Electric representative.

In addition, the screen creation software (GT Designer2 or GT Designer3) can be used to customize the screen and create an original-design screen.

B-52

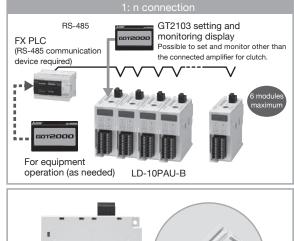
• Can change absence/presence of the output cushion operation using the external contact input

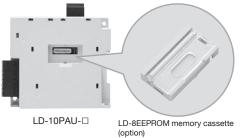
The output current can be cushioned and turned on and off as a countermeasure against residual torque ripple in hysteresis clutches and brakes.

 Equipped with open-loop control mode using analog reel diameter signal

Open-loop control is available using the analog reel diameter signal by selecting the tension controller mode.

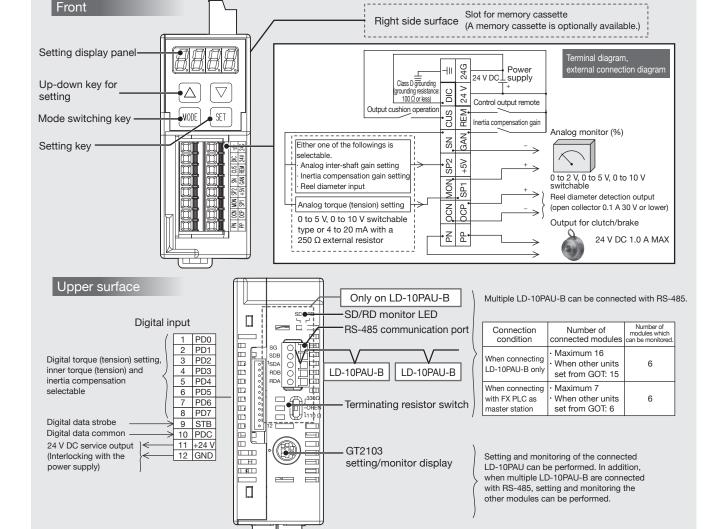
The tension can be controlled using the reel diameter signal sent from the potentiometer or ultrasonic sensor attached to the touch lever.


 The system including clutches and brakes can be totally controlled when a PLC is connected

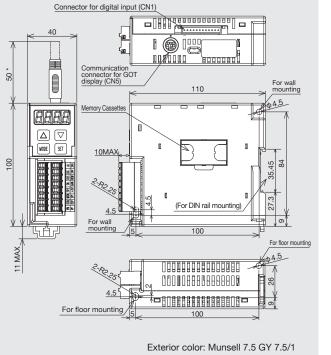

The LD-10PAU-B incorporating RS-485 communication can give output commands to the clutch amplifier and monitor the status when the FX series PLC (with N:N network function) is connected. This function makes it easy to control the clutch/brake including overall control of the device and to perform program development in multiple-shaft simultaneous control.

• Easy setup of multiple clutch amplifiers using the memory cassette

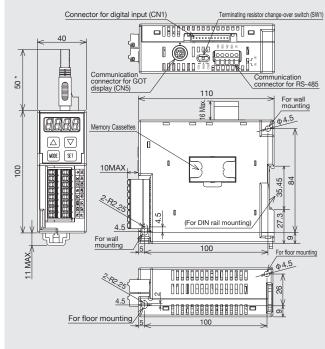
Various settings can be copied and read when the optional memory cassette is attached. Various settings can be automatically backed up at the time of startup when the memory cassette is attached.


Parts names and terminal signal information

Tension Meter/Tension Amplifier



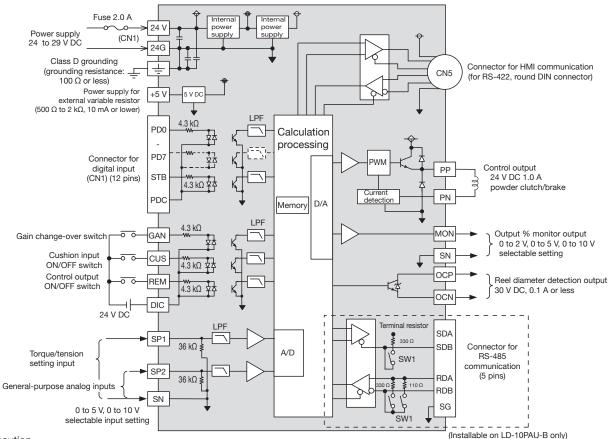
<u>ğ</u>lığ


Fension Controller

Outline dimensions (mm)

• LD-10PAU-A

Exterior color: Munsell 7.5 GY 7.5/1

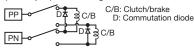

* When using the GOT display communication connector (CN5) and digital input connector (CN1), secure a space of 50 mm or more on top of the main unit.

Specifications

	Item			Specifications		
Power supply	Input	24 to 29 V DC, power co	onsumption: 40 VA, inrush	current: 30 A 1 ms, allo	wable momentary powe	er failure time: 5 ms
Fower supply	Output	Service power supply for	r external control: 5 V DC	(external resistance of 0	.5 to 2 kΩ), 10 mA or le	SS
		Control output remote	ON/OFF (ON: Output OFF,	OFF: Output ON)		ON current =
		Output cushion operation	on ON/OFF (ON: Cushion of	disabled/OFF: Cushion e	nabled)	Approx. 5 mA
	Input	Inertia compensation ga	in Enable/Disable			Approx. 5 mA
Contact signal		Digital input (12-pin conr	nector) Parallel torque setti	ng or external torque sele	ection (low-order 4 bits),	ON current =
		inertia compensation ga	in selection (high-order 4	bits) Memory value selec	tion	Approx. 5 mA
	Output	Reel diameter detection	output (open collector ou	tput)		0.1 A (resistive load) 30 V or less
		Torque (tension) setting	Input resistance: 36 kΩ			0 to 5 V, 0 to 10 V
Analog Signal	Input	on gain setting,	switching, with 250 Ω external resistor 4 to 20 mA supported			
	Output	Output%monitor output	0 to 2 V, 0 to 5 V, 0 to 10	V switching, Load resist	ance: 1 kΩ or more	
Control output		Powder clutch/brake for	24 V DC system, 24 V DC	C, 0 to 1.0 A		
Weight		300 g				
Installation met	hod	DIN rail, floor surface, w	all surface mounting			
	Operating ambient temperature	-5 to +55° C				
	Operating ambient humidity	35 to 85% RH (no cond				
	Storage temperature range	-25 to +75° C				
			Frequency	Acceleration	Half amplitude	10 times each in 3
		DIN rail installation	10 to 57 Hz	-	0.035 mm	axial directions
Environmental	Vibration resistance		57 to 150 Hz	4.9 m/s ²	-	(total 80 minutes
specifications		Direct installation	10 to 57 Hz	-	0.075 mm	each)
specifications			57 to 150 Hz	9.8 m/s ²	-	Sushi
	Impact resistance	98 m/s ² ···· 3 times each	in 3 axial directions			
	Power noise withstand level	Noise tolerance 500 Vp-	p, using a noise simulator	with noise width of 1 µs	and frequency of 30 to	o 100 Hz
	Withstand voltage	500 V AC for 1 minute (b	between all terminals toge	ther and the grounding t	erminal)	
	Insulation resistance	5 M Ω or more when measurements of Ω or more when measurements (matching terminal)	asured with 500 V DC insu	lation resistance tester (between all terminals to	ogether and the
	Grounding	Class D grounding (100	Ω or less, common groun	ding with strong power f	ield not possible)	
	Operating environment		e of corrosive or flammab			ave low levels of dus

Tension Controller

External connection



Precaution

1. Connect a fuse (2 A) to the outside for protection from short-circuit between 24 V and GND of CN1.

- 2. When a short circuit occurs between PP and PN, output is shut down for product protection.
- 3. When shutting off the control output externally by using relays or switches, the short-circuit protection circuit is activated by back EMF. So, provide a commutation circuit between PP and PN.

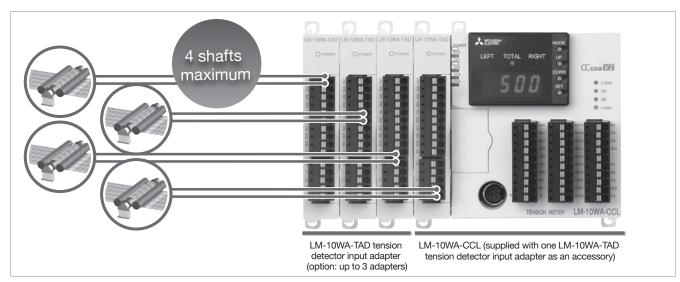
(Example) Switching of 2-shaft clutch/brake

• Terminal layout

1	24G
DIC	24V
cus pic	REM
SN	GAN
SP2	+5V
OCN MON	SP1
OCN	OCP
PN	ΡР

LM-10WA-CCL tension meter

This tension meter features flexible expandability, and supports centralized control using a network and communication for systems requiring multiple tension controls in machines that process and manufacture not only general materials such as films, metallic foils, paper, foods and electric wires but also special films and metallic foils used in lithium ion batteries, solar batteries, LCD panels, etc.

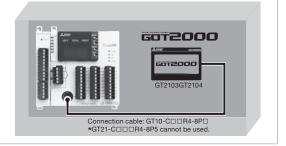

Features

Allows detector inputs for up to 4 shafts

The LM-10WA-CCL tension meter is supplied together with one LM-10WA-TAD tension detector input adapter. Adding a tension detector input adapter (option) enables inputs from the tension detectors of up to 4 shafts.

• Compliance with standards

EN standard: EC directive/CE marking (EMC directive) compliant * For details, refer to the instruction manual.


Easy display and tension meter operation setting also enabled with internal display

 Connecting to a GOT display enables display and operation with custom screens from the panel.

By using the drawing software for the GOT2000 series, original tension display and setting change screens can be created.

For the sample screen for the GT2103, consult your local Mitsubishi Electric representative.

Center

Fension Controller

Clutch Amplifie

Common Item

- Digital I/O terminals and analog output terminals Supports actual voltage display of tension detector
 - Digital input
 - RDY input and alarm reset input
 - Free setting output: Set up to 3 of the following functions: (RDY output, excessive input, left/right monitor unbalance, large inter-CH data deviation, network alarm generation, system alarm generation)
 - Analog outputs
 - Voltage output (CH1 to CH4): 4-point output range selectable
 - Current output (CH1 to CH4): 4-point output range selectable
 - Actual voltage of the tension detector

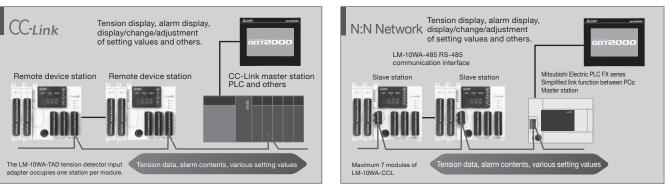
The built-in display displays the actual voltage of the tension detector. Signals can be checked easily when a problem occurs.

- Functions that enhance ease of use
 - Alarm history function

Up to 8 alarms are saved as history. The alarm notification method and action can be set.

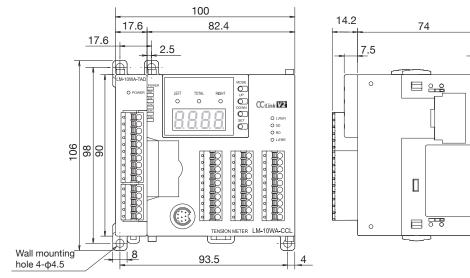
Password protection function

Change of "unchangeable items in RDY state" can be disabled.


- Reading from and writing to Microsoft[®] Excel[®] using MX Sheet The optional MX Sheet is available to read the tension and write the setting value to Microsoft[®] Excel[®].
- Backup function and setting value copy function using the memory cassette

The tension meter setting values can be automatically backed up. In addition, the setting values can also be copied to multiple tension meters.

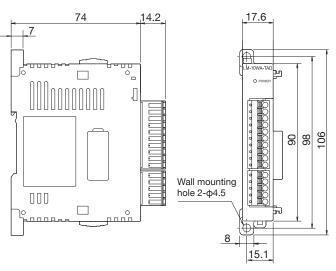
 Equipped as standard with the remote device station function of CC-Link V2 (Ver. 1.10 and Ver. 2.00) Easy connection to FX series PLC via RS-485 communication interface


It is easy to centrally manage the tension with the PLC, check the alarm of the tension meter, and change/adjust the setting. The remote device station function of open field network CC-Link V2 for connecting various FA equipment in wire-saving mode is included as standard.

By attaching an optional RS-485 communication interface (LM-10WA-485), the unit can be easily connected to the FX series PLC as a "slave station for N:N networks.".

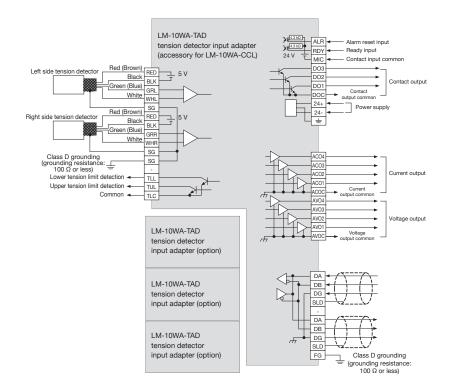
Outline dimensions (mm)

• LM-10WA-CCL


Exterior color: Munsell 0.08GY/7.64/0.81

7

0


0

• Option: Tension detector input adapter LM-10WA-TAD

Exterior color: Munsell 0.08GY/7.64/0.81

External connection

Specifications

Item		Specifications										
Ambient temperature	Operating: -5 to +55°C,	erating: -5 to +55°C, Storage: -25 to +75°C										
Operating ambient humidity	35 to 85% RH (no conde	ensation)										
		Frequency	Acceleration	Half amplitude								
Vibration resistance	DIN rail installation	10 to 57 Hz	-	0.035 mm	10 times in each of V. V							
(total 80 minutes each)	DINTALITISTALIALION	57 to 150 Hz	4.9 m/s ²	-	 10 times in each of X, Y and Z directions 							
(total 80 minutes each)	Direct installation	10 to 57 Hz	-	0.075 mm								
	Direct installation	57 to 150 Hz	9.8 m/s ²	-								
Impact resistance	98 m/s ² ······ 3 times eac	h in 3 axial directions										
Power noise withstand level	Noise voltage 500 Vp-p,	using a noise simulator	with noise width of 1 µs	and frequency of 30 to	100 Hz							
Withstand voltage	500 V AC for 1 minute (k	between all terminals tog	ether and the grounding	g terminal)								
Insulation resistance	5 M Ω or more when meas	sured with 500 V DC insul	ation resistance tester (be	etween all terminals toget	her and the grounding terminal)							
Grounding	Class D grounding (100	Ω or less, common grou	nding with strong powe	r field not possible)								
Operating environment	ironment Environment must be free of corrosive or flammable gases as well as conductive dust, and must have low levels of dust.											

Tension Controller

[LM-10WA-CCL specifications]

• Function specifications

Item		Specifications
Setting procedure		Parameters can be set by button operation on the internal setting display.
	Number of input channels (Up to 4 channels)	Main unit: Equipped with 1-channel tension detector input adapter as standard (One detector alone as well as one each on the right and left)
Tension signal		Option: Up to 3 channels of tension detector input adapters can be added.
Tension signal	Support sensor	LX-TD/LX7-F tension detector, strain gauge (2 mV/V)
	Power supply for sensor	Built-in 5 V DC, 20 mA
	Alarm output	Tension lower limit detection, tension upper limit detection
	Built-in display	7-segment display on the built-in display (display by switching 1 to 4 channels by button operation)
	Analog outputs	Analog voltage output, analog current output (output range switchable)
Tension display	Others	 Display by GOT display Reading from master station by CC-Link connection Reading from master station by simple inter-PC link connection with FX PLC
Digital input signal		2 points (RDY input and alarm reset input)
Digital output signa	J	4 points (select output functions from "RDY output, excessive input, left/right monitor unbalance, large inter-CH data deviation, input adapter bus alarm, and input adapter memory alarm")
GOT communication interface		RS-422 port: 1 channel Mitsubishi Electric GOT: Compatible with GT1020, GT1030, GT2103, and GT2104 Connection cable: GT10-C□□R4-8P□ (When the unit is connected without power supply wiring, a cable length of up to 3 m is allowed.)
CC-Link	Station type	Remote device station
communication	Number of occupied stations	One tension detector adapter occupies one station.
interface	CC-Link version	Ver. 1.10 / Ver. 2.00
	Tension detector input adapter	Up to 3 LM-10WA-TAD tension detector input adapters can be added. (Maximum 4 channels in total with the tension detector input adapter attached to the main unit)
Ostion	RS-485 communication	LM-10WA-485 type RS-485 communication interface can be installed for N:N networks with the FX series PLC. * Simultaneous use of CC-Link and RS-485 communication is disabled.
Option	USB connectivity	LM-10WA-USB USB communication interface can be installed for connection with MX Sheet. MX Sheet can be used to read the tension value from and write the set value to Microsoft [®] Excel [®] . [USB cable] • MR-J3USBCBL3M (3 m) • GT09-C30USB-5P (3 m) Mitsubishi Electric System & Service Co., Ltd.
	External memory	LD-8 EEPROM type memory cassette can be installed for backup and copying settings.
Power supply		24 V DC -15% +20%, allowable momentary power failure time: 5 ms
Power consumption	n	20 W, inrush current: 20 A, 2 ms
Weight		Approx. 350 g
Installation method		Screwing, DIN rail

• I/O specifications

	Main unit	Specifications	
Contact input	READY input (RDY-DIC)	24 V DC, ON current: Approx. 5 mA	
Contact input	ALARM RESET input		
Contact output	Digital output 1 to 3 (DO1 to DO3-DOC)	Open collector output, 0.1 A (resistive load), 30 V DC or less	
Contact output	(Output function enabled by contact output setting)		
Analog Analog voltage output 1 to 4 (VO1 to VO4-VOC)		Voltage output switchable (0 to 5 V, 0 to 10 V, 1 to 5 V), load resistance 1 k Ω or more	
outputs	Analog current output 1 to 4 (CO2 to CO4-COC)	Current output switchable (0 to 20 mA, 4 to 20 mA), load resistance 500 Ω or less	

	Tension detector input adapter	Specifications		
Support sensor		LX-TD/LX7-F tension detector, strain gauge (2 mV/V)		
Number of connected devices/setting		"Display total value of 1 device each on the right and left" or "1 device" can be set.		
Power supply for sensor	Sensor power supply (RED-BLK)	5 V DC, 20 mA Up to 2 LX-TD tension detectors can be connected.		
Tension sensor	Left side input (GRL-WHL)	Input range switchable (LX-TD tension detector, and distortion gauge		
input	Right-side input (GRR-WHR)	[20 mV/full scale])		
Contact output	Tension lower limit detection digital output (TLL-TLC)	Open collector output, 0.1 A (resistive load), 30 V DC or less		
	Tension upper limit detection digital output (TUL-TLC))		

[Option: Tension detector input adapter LM-10WA-TAD specifications]

	Tension detector input adapter	Specifications	
Support sensor		LX-TD/LX7-F tension detector, strain gauge (2 mV/V)	
Number of connect	ed devices/setting	"Display total value of 1 device each on the right and left" or "1 device" can be set.	
Power supply for sensor	Sensor power supply (RED-BLK)	5 V DC, 20 mA Up to 2 LX-TD tension detectors can be connected.	
Tension sensor	Left side input (GRL-WHL)	Input range switchable (LX-TD tension detector, and distortion gauge	
input	Right-side input (GRR-WHR)	[20 mV/full scale])	
Contact output	Tension lower limit detection digital output (TLL-TLC)	Open collector output, 0.1 A (resistive load), 30 V DC or less	
Contact output	Tension upper limit detection digital output (TUL-TLC)		
Weight		Approx. 80 g	
Installation method		Screwing, DIN rail	

• GOT device (MX Sheet)/function outline

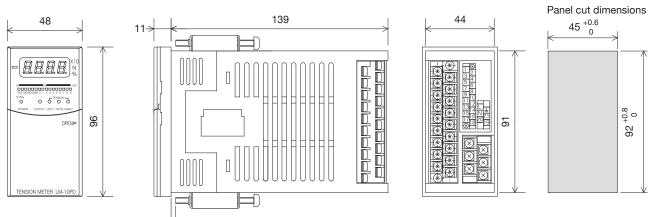
Common	Device per channel		Eupotion	Monitor/	Mini-	Maximum	Change		
device	CH1	CH2	СНЗ	CH4	Function	setting	mum value	value	during RDY
-	D0	D32	D64	D96	Total tension	Monitor			-
-	D1	D33	D65	D97	Left tension	Monitor			-
-	D2	D34	D66	D98	Right tension	Monitor			-
-	D3	D35	D67	D99	Output%monitor	Monitor			-
	D0 D4	D36	D68	D100	Left input voltage	Monitor			
-	D5	D37	D69	D101	Right input voltage	Monitor	1.00	0.00	-
-	D6	D38	D70	D102	Input adapter version monitor	Monitor	1.00	9.99	-
-	D7 to D15	D39 to D47	D71 to D79	D103 to D111	Unavailable				
-	D16	D48	D80	D112	Sensor input type	Setting	0	1	×
-	D17	D49	D81	D113	Full scale tension	Setting	1	2000	\checkmark
-	D18	D50	D82	D114	Main tension display decimal point position	Setting	0	2	×
	D10	DE1	Daa	DIIC		O attine at		Full and a tension	
-	D19	D51	D83	D115	Span target tension value	Setting	1	Full scale tension	×
-	D20	D52	D84	D116	Tension detection lower limit setting	Setting	0	2000	
-	D21	D53	D85	D117	Tension detection upper limit setting	Setting	0	2000	1
-	D22	D54	D86	D118	Tension display left gain	Setting	50.0	300.0	×
-	D23	D55	D87	D119	Tension display right gain	Setting	50.0	300.0	×
-	D24	D56	D88	D120	Tension display left bias	Setting	-50.0	50.0	×
-	D25	D57	D89	D120	Tension display right bias	Setting	-50.0	50.0	×
-	D26	D58	D90	D122	Output gain	Setting	50.0	300.0	×
-	D27	D59	D91	D123	Output bias	Setting	-50.0	50.0	×
-	D28	D60	D92	D124	Tension detection filter	Setting	0.0	2.0	\checkmark
-	D29	D61	D93	D125	Tension input filter	Setting	0.0	2	\checkmark
D126 to D127	-	-	-	-	Unavailable				
D128	-	-	-	-	Tension sampling cycle	Setting	10	60	×
D129	-	-	-	-	Tension display filter	Setting	0.5	4.0	1
D120	-	-	-	-	Output filter	Setting	0.0	4.0	√
					· ·				
D131	-	-	-	-	Link tension filter	Setting	0.0	4.0	√
D132	-	-	-	-	Analog monitor output mode	Setting	0	4	×
D133	-	-	-	-	Channel linkage setting	Setting	0	3	×
D134	-	-	-	-	Inter-channel linkage abnormality judgment tension	Setting	1	50	×
D135	-	-	-	-	Inter-channel linkage watch cycle	Setting	1	30	1
D136	_	_	-	-	READY input	Setting	0	1	- V
D137	-	-	-	-	Alarm reset	Setting	0	1	
D138	_		-	-	Password input	Setting	0	999	<u></u>
D139 to D143	-	-	-	-	Unavailable	Cotting	•	000	V
							1 00	0.00	
D144	-	-	-	-	Main system ROM Ver.	Monitor	1.00	9.99	-
D145	-	-	-	-	Memory cassette setting	Setting	0	1	×
D146	-	-	-	-	Contact output setting 1	Setting	0	6	×
D147	-	-	-	-	Contact output setting 2	Setting	0	6	×
D148	-	-	-	-	Contact output setting 3	Setting	0	6	×
					Transfer between main unit				
D149	-	-	-	-	and input adapter	Setting	0	13	×
D150	-	-	-	-	Memory initialization	Setting	0	5	
						-			×
D151	-	-	-	-	Password setting	Setting	0	999	×
D152 to D159	-	-	-	-	Unavailable				
D160	-	-	-	-	Start station number setting	Setting	1	64	×
D161	-	-	-	-	Setting of number of occupied stations	Setting	0	Number of input adapters	×
D162	-	-	-		Communication speed setting	Setting	0	4	×
D163	-	-	-	-	Extended cyclic setting	Setting	1	4	×
D164	-	-	-	-	CC-Link version	Setting	1	2	×
D165	-	-	-	-	Station No. in N:N Network	Setting	0	7	×
D166 to D175	-	-	-	-	Unavailable				
D176	-	-	-	-	Alarm history 0	Monitor	0	40	-
D177	-	-	-	-	Alarm history 1	Monitor	0	40	-
						Monitor	0	40	
D170	-	-	-	-	Alarm history 2				-
D178	-	-	-	-	Alarm history 3 Monitor 0		40	-	
D179		-	-	-	Alarm history 4	Monitor	0	40	-
	-								
D179	-	-	-	-	Alarm history 5	Monitor	0	40	-
D179 D180 D181			-	-			0	40 40	-
D179 D180 D181 D182	-				Alarm history 6	Monitor	0	40	-
D179 D180 D181	-	-	-	-					

Tension Controller

LM-10PD tension meter

The LM-10PD tension meter displays the winding, unwinding, and intermediate tension in applications that handle paper, wires, and various sheet-like materials by receiving signals from the LX7-F/LX-TD tension detector or a distortion gauge sensor, and outputs amplified signals to devices such as a recorder, external tension meter, or PLC.

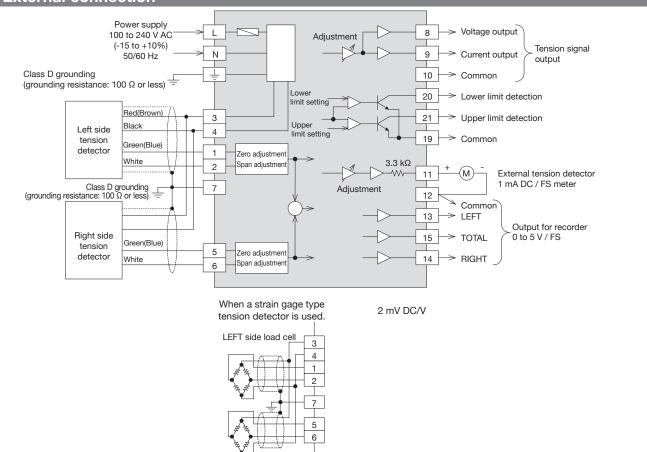
Features


- Panel size of 48 × 96 realizes small size and light weight.
- Auto zero, auto span adjustment Zero and span adjustment of tension detector is possible with one touch.
- · Digital value setting of parameters.
- Tension upper/lower limit detection function (detection of 2 points).
- · Memory function of tension peak value.
- Usable in combination with a strain gauge type sensor.
- · Each output filter can be adjusted individually.
- Manual offset/span adjustment is possible for display and output.

Panel screen configuration

Minus sign LED	X10 N %	_ Tension and analog output signal monitor
Tension level meter/ parameter indicator LED	01000000000000000000000000000000000000	— Monitoring item indicator LED
Power indicator LED Tension calibration mode	O O O ALITO DEP. DEP. SPAN OFFSET SPAN	— Setting value increment key
indicator LED Monitoring item switching key		Tension detector zero adjustment key
Setting value digit shift key		— Setting value enter key
		 Setting value decrement key

Outline dimensions (mm)


 $\rightarrow k$ Allowable plate thickness for installation: 5 mm or less

Powder Clutch/Brake

Exterior color: Munsell 7.5 GY 7.5/1 Accessories: 1 set of mounting brackets

	Item	Specifications
Power supply voltage		100 to 240 V AC (-15 to +10%), 50/60 Hz, Power consumption: 50 VA
Tens	ion signal output	Switching between 0 to 5 V, 0 to 10 V, 1 to 5 V/FS (load resistance: 1 kΩ or more), 4 to 20 mA/FS (load resistance: 500 Ω or less)
Tens	ion detection output	Upper and lower limit tension detection (2-point detection) Open collector output 30 V DC/0.5 A
Exte	rnal tension meter	DC 1 mA/FS meter (internal resistance: 1.5 kΩ or less)
Outp	out for recorder	0 to 5 V for tension full scale (load resistance 10 kΩ or more)
Tens	ion display	4-digit digital display with 7-segment LED. Full scale can be set within the range of 0.01 to 20000 N, unit display switching of [N and [X10N]. Level meter display with 16 LEDs, and display switching between Left, Total, and Right
Outp	out display	Analog output % display with 7-segment LED
Setti	ings parameter display	LED display of item numbers and 7-segment LED display of setting value
	Operating ambient temperature	0 to 55°C ······During operation
suc	Operating ambient humidity	35 to 85% RH or less (no condensation)During operation
catic	Vibration resistance	10 to 55 Hz, 0.5 mm (up to 4.9 m/s ²), 2 hours in each of X, Y and Z directions
ecifi	Shock resistance	3 times in each of X, Y and Z directions for 98 m/s ²
ntal sp	Power noise withstand level	Noise voltage 1000 Vp-p, using a noise simulator with noise width of 1 µs and frequency of 30 to 100 Hz
Environmental specifications	Withstand voltage	1500 V AC for 1 minute: between power supply terminal (AC power supply) and the grounding terminal, between power supply terminal (AC power supply) and input/output terminal 500 V AC for 1 minute: between input/output terminals and the grounding terminal (Not insulated between input and output terminals)
	Insulation resistance	500 V DC, 5 MΩ or more by insulation resistance tester (between all terminals together and the grounding terminal)
	Operating environment	Free of corrosive and flammable gases, and must have low levels of dust.
Weig	ght	Approx. 500 g
Insta	allation method	Panel mounting

External connection

Powder Clutch/Brake

Tension Controller

B-63

LM-10TA tension amplifier

The LM-10TA tension amplifier is used in combination with the LX-TD/LX7-F tension detector and outputs signals that correspond to winding, unwinding, or countershaft tension (to the recorder, external tension meter, controller, etc.) in applications that handle paper, electric wire, or various sheet-like materials.

Features

Compact profile

Compact profile made possible by supporting only the essential functions. It fits easily inside a control panel or in almost any space on a machine.

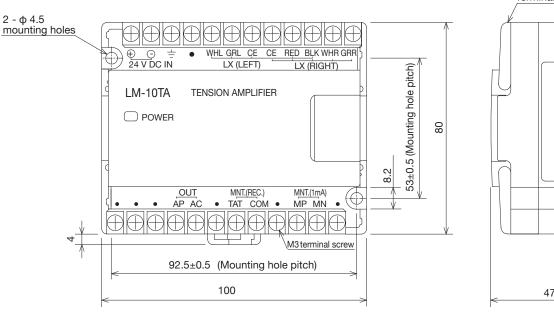
• Free choice of applications

By attaching an external meter, digital or analog can be freely chosen for tension display. It can also be used easily as an input signal to the tension controller.

Ideal for centralized display

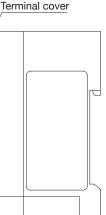
By using a PLC and display together, tension display for each process can be performed intensively.

Easy remote display


Using the output signal (DC 0 to 5 or 10 V), tension display can be easily done at a remote place.

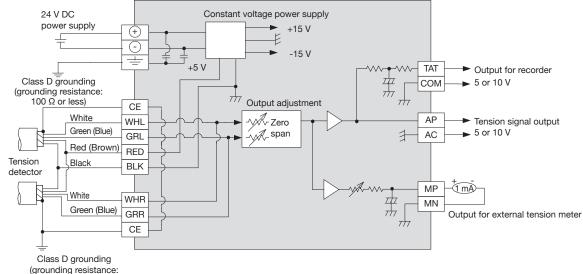
• Easy recording of tension fluctuations

Tension data can be recorded by connecting a recorder and using recorder signals.


• DIN rail installation enabled

Outline dimensions (mm)

Exterior color: Munsell 7.5 GY 7.5/1



	I	tem	Specifications						
Damanak		Input	24 V DC ±15% Power consumption: Approx. 0.2 A						
Powe	er supply	Output	Tension detector power supply: Up to 2 LX-TD/LX7-F tension detectors can be connected.						
Output signal		1	Tension signal Adjustable in the range of (0 to 5) to (0 to 10) V DC at tension scale Load resistance: 1 kΩ or more Recorder signal Adjustable in the range of (0 to 5) to (0 to 10) V DC at tension scale Load resistance: 100 kΩ or more Signal for external tension meter 1 mA DC ammeter Load resistance: 300 Ω or less						
Adjustment variable resistor		ble resistor	For zero/span adjustment (4 pieces) Built-in adjustment window For external tension meter (1 piece) Built-in adjustment window						
Weig	ght		Approx. 200 g						
Insta	allation metho	od	Screwing, DIN rail						
S	Operating a temperatur		0 to 55°C						
atior	Operating a	ambient humidity	35 to 85% RH (no condensation)						
specifications	Vibration re	esistance	10 to 55 Hz, 0.5 mm (up to 19.6 m/s ²), 2 hours each in 3 axial directions						
spe	Impact resi	istance	98 m/s ² 3 times each in 3 axial directions						
ntal	Power nois	e withstand level	Noise voltage 1000 Vp-p, using a noise simulator with noise width of 1 µs and frequency of 30 to 100 Hz						
eme	Insulation r	esistance	500 V DC, 5 M Ω or more when measured with insulation resistance tester						
Environmental	Grounding		Class D grounding, grounding resistance 100 Ω or less						
Ш	Operating	environment	Environment must be free of corrosive gases and conductive dust, and must have low levels of dust. Free from rain an water drops.						

External connection

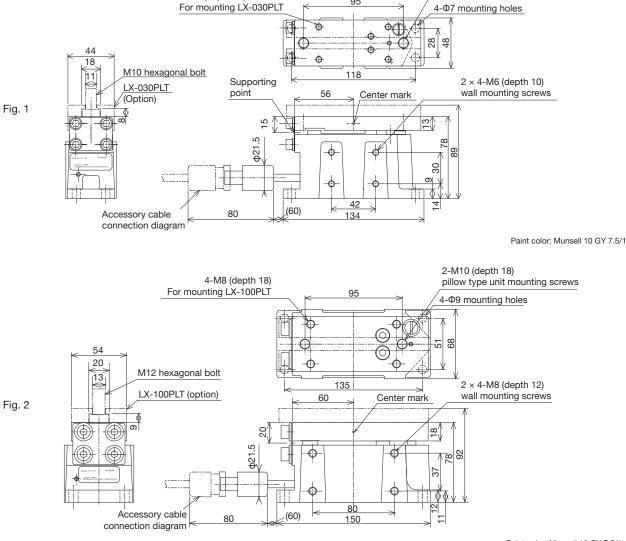
(grounding resistance: 100Ω or less)

Tension Controller

LX-TD tension detector

The LX-TD tension detector is used in combination with a feedback type tension controller such as LE7-40GU-L, LE-10WTA-CCL, LE-40MTA(-E), LE-40MTB(-E), or LE-30CTN.

It can also be used in combination with the LM-10PD or LM-10WA-CCL tension meter to implement tension monitoring.


Features

- A tension detector is a device which converts tension into load once, and uses the load as an electrical signal.
- The electrical signals are input to tension controllers and tension meters.
- Various mounting methods are available: floor mounting, ceiling mounting, and wall mounting.
- By selecting the type of pillow block unit, many reel diameters can be compatible.
- Mounting plates for pillow block units are also available (optional).

4-M6 (depth 13)

• A 7 m cable is included.

Outline dimensions (mm)

Paint color: Munsell 10 GY 7.5/1

2-M10 (depth 13)

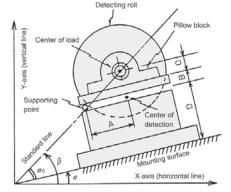
pillow type unit mounting screws

•

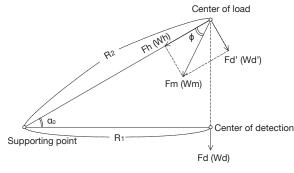
Item		Specifications							
Model name*1		LX-005TD	LX-015TD	LX-030TD	LX-050TD	LX-100TD	LX-200TD		
Rated load (N)		50	150	300	500	1000	2000		
Applicable load	direction			Both compression a	nd tension directions	5			
Maximum load	withstand level (N)	400	1000	1000	1000	2000	4000		
Input power		5 V DC, 20 mA or less (red: 5 V DC, black: GND)							
Output voltage			150 ±30	mV DC (when 10 kΩ	load resistance is co	onnected)			
Output voltage	During compression load			Green +	, White -				
polarity	During tension load			Green -	, White +				
	Temperature drift			1%/FS or	less/20°C				
Detection accuracy*2	Linearity			±1%	or less				
accuracy	Hysteresis	0.5% or less	0.5% or less	0.5% or less	0.5% or less	0.5% or less	1.0% or less		
Installation met	hod		Flo	or mounting, wall mo	ounting, ceiling moun	ting			
Cable specifica	tions	7 m (accessory)							
Weight (kg)			1	3					
Operating cond	litions	Ambient temperature: -5 to +60°C, Vibration: 2 m/s ² or less							
Outline dimensi	ions		Fiç	g. 1		Fiç	g. 2		
Applicable bear	rings	UCP201-204 UCP205 can also be used by using the optional LX-030PLT. UCP205 can also be used by using the optional LX-030PLT. UCP205 and UCP206 can also be used by using the optional LX-100PLT.							
Surface treatme	ent	Painting and plating							
	Operating temperature/ storage temperature	-5 to 60°C (no freezing)							
	Operating humidity/ storage humidity	85% RH or less (no condensation)							
	Vibration resistance	2 m/s ² or less							
Environmental	Impact resistance	98 m/s ² or less: 3 tir	nes each in 3 axial di	rections					
specifications	Power noise withstand level	Noise voltage 1000	Vp-p, Noise width 1	JS					
	Withstand voltage	1000 V AC for 1 min	: Measure across all	terminals grouped to	gether and the housi	ng.			
	Insulation resistance	100 M Ω or more wh and the housing.	en measured with 50	0 V DC insulation res	istance tester: Measi	ure across all terminal	s grouped togethe		
	Operating environment	Environment must b	e free of corrosive or	flammable gases as	well as conductive d	ust, and must have lo	w levels of dust.		

*1: Can be manufactured with the nickel plating specifications. Inquire separately.

*2: The detection accuracy is the accuracy for the isolated tension detector. The detection accuracy for the system will vary according to the machine specifications and installation accuracy, etc.


Selecting a tension detector

This section describes the method of selecting a tension detector corresponding to an arbitrary mounting angle and paper passing angle. Depending on the installation conditions, selection may not be possible. In this case, change the conditions and perform the selection calculation again.


· Calculating the reference angle β

Find the reference angle β from the height C of the pillow block unit.

In the figure below, the intersection of the reference line (the line connecting the fulcrum of the detector and the load center), the mounting plane, and X axis (horizontal line) is the origin of the coordinate.

Component force of load and effective load

Detection type	А	В	Recommended pillow block unit
LX-005 to 050TD	56.3	15	UCP-201 to 204
LX-100, 200TD	60.3	20	UCP-201 to 204

A: Distance between the detector's supporting point and the center of the measurement point

B: Height between the detector's supporting point and the reel mounting surface C: Height of the pillow block unit

A: Mounting angle $\alpha = 0$ to 360

 a_0 : Fulcrum angle $a_0 = \tan \frac{-1}{A} \frac{B+C}{A}$ (1)

 $\beta: \text{Reference angle } \beta = \alpha \pm \alpha_0 (+ \alpha_0 \text{ or } - \alpha_0 \text{ depending on the position of the} \\ fulcrum)$

F

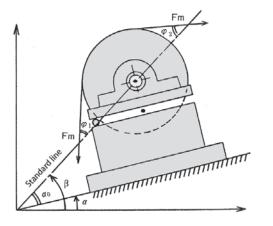
$$Fd = Fd' \frac{R^2}{R^1} = Fm sin\phi/cosa_0$$

Use the same formula to calculate roll load components.

Tension components

Fm: Allowable tension per detector (N)

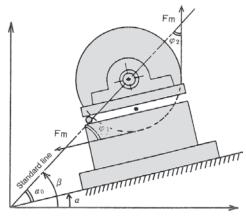
- Fh: Tension component that pulls in the direction of the supporting point (N)
- Fd: Tension component that pulls in the direction of the measurement point center $\left(N\right)$

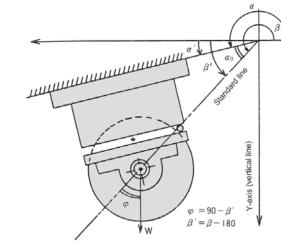

Roll load components

Wm: Roll load per detector (N)

Wh: Roll load component that is applied in the direction of the supporting point (N)

Wd: Roll load component that is applied in the direction of the measurement point center (N)


- Calculating the tension components
 - Compression load


- $Fh = Fm (\cos\phi 1 \cos\phi 2)(2)'$ $Fd = Fm (\sin\phi 1 + \sin\phi 2)/\cos\alpha_0(3)'$
- Calculating the roll load components
 - Compression load

= 90 - A

- $Fh = Fm (\cos\phi_1 \cos\phi_2) \dots (2)"$ $Fd = -Fm (\sin\phi_1 + \sin\phi_2)/\cos\alpha_0 \dots (3)"$
- Expansion load

$Wh = -Wmcos\varphi = Wmsin\beta \dots$	(4)"
$Wd = -Wmsin\phi/cos\alpha_0 = Wmcos\beta/cos\alpha_0$	(5)"

Selection conditions

Select a detector whose load rating (Go) meets the following criteria.

$$\label{eq:Wh} \begin{split} Wh &= Wm cos \varphi = Wm sin \beta \qquad (4)^{"} \\ Wd &= Wm sin \varphi / cos \alpha_0 = Wm cos \beta / cos \alpha_0 \qquad (5)^{"} \end{split}$$

mmmmmmmm

(1) Roll load component toward the detection center point $Wd = |Wmcos \beta/cos \alpha_0| \le 0.8 \text{ Go}$ (0 adjustment range. Ideally this value should be made as small as possible.)

(2) Tension component toward the detection center point $Fd = |\pm Fm (\sin \varphi_1 + \sin \varphi_2) / \cos \alpha_0| \ge 0.2 G_0$ (From the span adjustable range of the control device, the tension component Fd at the maximum tension is set to 20% or more of the rated load. Ideally this value should be as large as possible.)

- (3) Total load that is applied in the direction of the measurement point center Gd = |Fd + Wd|
 - = | [\pm Fm (sin φ_1 + sin φ_2) + W m cos β] /cos α_0 |
 - \leq G0 (when using a single detector with wire, etc. for detector protection)

 \leq 0.8 Go (when using 2 detectors with a wide material, etc. Considering the fluctuation due to tension of the material, etc. as 20%, assume it is 80% or less of the rated load.)

- (4) Supporting point load that is applied to the detector Gh = |Fh + Wh|
 - = $|Fm (\cos \varphi 1 \cos \varphi 2) + Wm \sin \beta| \le 2G0$ (for fulcrum protection)|

Fension Controller

Sample calculation

 Conditions Tension: F = 150 to 400 N Roll load: W = 250 N (including pillow block unit weight × number of units) Material angle: $\theta_1 = 60^\circ$, $\theta_2 = 30^\circ$ Number of detectors: N = 2Center height of pillow block unit: 33.3 mm (UCP-204) φ_1

θ_2 Center of detection Supporting point ~~~~ Mounting angle a = 0 (horizontal mounting) Detailed calculation Temporarily select LX-100TD meeting G0 = 1000 N. Supporting point angle: $\alpha_0 = \tan^{-1} ((20+33.3)/60.3) = 41.47^{\circ}$ Reference angle: $\beta = 41.47^{\circ}$ Paper feeding angle: $\phi_1 = \theta_1 - \alpha_0 = 18.53^{\circ}$ $\phi_2 = \theta_2 + \alpha_0 = 71.47^{\circ}$ Fd = 400 (sin18.53° + sin71.47°)/cos41.47° Suppose the ratio of Fd to the rated load is Fd', $Fd' = Fd/(N \times G_0) = 33.79\%$ \geq 20% This is within the span adjustment range. When accuracy is required, however, the larger the percentage, the better. 35% or more is recommended. Wd = 250 (cos41.47°/cos41.47°) Suppose the ratio of Wd to the rated load is Wd', $Wd' = Wd/(N \times G_0) = 12.5\% \le 80\%$ ≥ -80% This is within the zero adjustment range.

 φ_2

Suppose the ratio of total load Gd to the rated load is Gd',

Gd' = Fd' + Wd' = 46.29%	< 80%
aa = 1 a + Wa = 40.2070	> -80%
	This is within the allowable load range.
	This is the case where the tension of the material is assumed to be 20%.
	It can be used up to $\pm 100\%$ in the case of a single detector for wires, etc.
Similarly,	
Gh = 252.1 + 165.6 = 417.7	Ν

Assuming that the ratio of Gh to the rated load is Gh',

 $Gh' = Gh/(N \times G_0) = 20.89\% \le 100\%$ ≥ -100% This is within the allowable load range.

Selection result

= 675.8 N

= 250 N

Based on the above calculation, the use of 2 LX-100TD tension detectors is recommended.

Fension Controller

Common

LX7-F tension detector

The LX7-F tension detector is a flange mounted type tension detector. This tension detector is used in combination with the tension controller and tension meter to output a voltage proportional to the load applied to the detection roller.

Features

Built-in High-accuracy sensor

The sensor part adopts the highly reliable differential transformer type like the stationary mounting type (LX-TD type).

Thin disc type


The thin shape helps minimize the equipment width. Ease of changing the path line allows the adjacent rollers to be arranged closer, which improves the freedom of layout.

Nickel plated iron body

The body is made of iron, which is used in many machine frames. Having the same thermal expansion rate as other machine frames helps suppress the effect of changes in ambient temperature. The surface is treated with electroless nickel plating to increase the corrosion resistance.

Outline dimensions (mm)

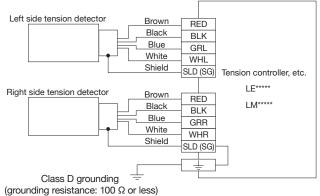
Accessories

- Snap ring (for hole) Nominal 40 2 pcs.
- 7-m shielded cable with connector 1 cable
- Seal (for preventing entry of dust, etc.) ... 2 pcs.

Recommended bearings

Bearings are not enclosed with this product. Prepare the following recommended bearings.

Tension	Compatible reel diameter (mm)	Bearing manufacturer and nominal No.				
detector Rated load (N)		NSK Ltd.	NTN Corporation	Nachi- Fujikoshi Corporation		
50/150/300/500	17	1203	1203S	1203		

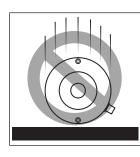

Ite	m	Specifications					
Model name		LX7-50FN17	LX7-150FN17	LX7-300FN17	LX7-500FN17		
Rated load (N)		50	150	300	500		
Load direction		Compression (+), tension (-)					
Maximum load w	vithstand level	200% of rated load					
Outline dimensio	ons	Outer diameter φ105 × width 34.4 mm					
Input power		5 V DC, 20 mA or less (brown: 5 V DC, black: GND)					
Output voltage		150 ±30 mV DC (when 10 k Ω load resistance is connected)					
Output voltage	During compression load	Blue + White -					
polarity	During tension load	Blue - White +					
	Temperature drift	1%/FS or less/20°C					
Detection accuracy*	Linearity	±1% or less					
abbaraby	Hysteresis	0.5% or less					
Installation meth	ion method Wall mounting						
Weight		1.2 kg					
Compatible shaf	batible shaft diameter 17 mm (when inserting bearings)						
Surface treatmer	nt (exterior part)	Electroless nickel plating					
Operating temperature/ storage temperature -5 to 60°C (no freezing)							
		35% RH or less (no condensation)					
Uibration re	esistance	2 m/s ² or less					
Impact res	Impact resistance 98 m/s ² or less: 3 times each in 3 axial directions						
Operating humidity/ storage humidity/ storage humidity/ 85% RH or less (no condensation) Vibration resistance 2 m/s ² or less Impact resistance 98 m/s ² or less: 3 times each in 3 axial directions Power noise withstand level Noise voltage 1000 Vp-p, Noise width 1 µs Measured by a noise simulator with frequency range of 30 to 100 Hz Withstand voltage 1000 V AC for 1 min: Measure across all terminals grouped together and the housing. 100 MΩ or more when measured with 500 V DC insulation resistance tester: Measure across all terminals grouped							
Vithstand voltage 1000 V AC for 1 min: Measure across all terminals grouped together and the housing.							
Vitnstand voltage 1000 V AC for 1 min: Measure across all terminals grouped together and the housing. Insulation resistance 100 MΩ or more when measured with 500 V DC insulation resistance tester: Measure across all terminals grouped together and the housing.				inals grouped together			
Oneveting	Operating equipment with the first of severing or flowmable gapes or well as conducting dust and must have low levels of dust.						

Operating environment Environment must be free of corrosive or flammable gases as well as conductive dust, and must have low levels of dust.

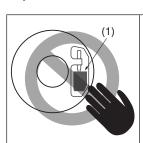
*: The detection accuracy is the accuracy for the isolated tension detector. The detection accuracy for the system will vary according to the machine specifications and installation accuracy, etc.

External connection

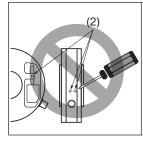
The color scheme of the cable for the LX7-F flange-type tension detector is different from that of the LX-TD tension detector. Use the following external connection diagram as a reference for wiring.

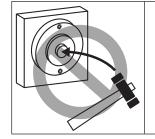


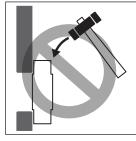
Powder Clutch/Brake

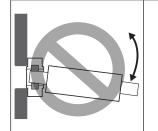

Common Item

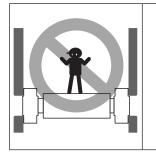
Usage precautions


LX7-F flange-type tension detector is a precision device. Especially, the sensor part can be damaged by impact or disassembly. Please handle with care.

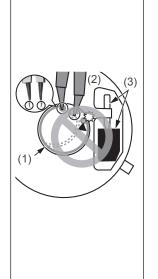

Do not drop the tension detector.


Do not touch or press the sensor part (1).


Do not loosen the sensor mounting screw (2).


Do not hit the tension detector when installing the tension detector to the device and when installing bearing/shaft to the tension detector.

Do not hit the tension detector when performing centering adjustment.



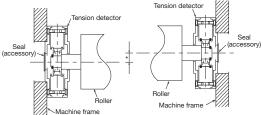
Do not pry the shaft.

Do not apply a load which exceeds the maximum load (200% of rated load) when installing and arranging the tension detector. Do not use the tension detection roller as a foothold

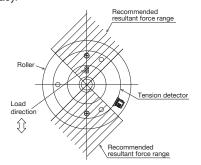
while working.

the bearing insertion hole to sustain impact when attaching/ detaching the retaining ring (1). If the narrowed retaining ring (1) slips off the tool (2) and falls into the bearing insertion hole, the inner wall of the bearing insertion hole could sustain impact via the repulsive force of the retaining ring (1), and the sensor part (3) could be damaged.

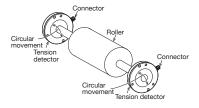
Do not allow the inner wall of

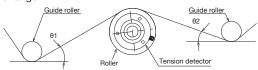

To reliably hold the retaining ring (1) firmly in place, use a tool (2) with an anti-slip end that is in proper working condition. Then, slowly return the narrowed retaining ring (1) so as to attach/ detach the retaining ring (1) so that no impact is sustained by the inner wall of the bearing insertion hole.

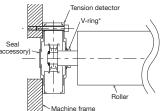
Installing the tension detector


This product is a highly sensitive detector produced with precision machining and assembly technology. Caution is required during assembly and operation.

1. Precautions for installation

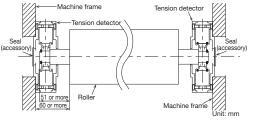

- Always use Self-aligning ball bearings so that unbalance of the tension detection rollers, mechanical machining errors such as uneven sensor mounting face, and changes in the roller length caused by temperature changes are not detected as tension. Keep mechanical machining errors mentioned above as small as possible in order to minimize tension detection errors. ISO 1940-1: 2003(E) G1-G6.3 is recommended for the tension detection roller unbalance. (Follows machine specifications)
- 2) When supporting the tension detection roller on both ends, align the height of the tension detector installation face.


- Keep the * section as low as possible to minimize tension detection error.
- If the * section dimensions are large, there is a risk of the material snaking, the life of the bearings dropping, and the zero point output fluctuating, etc.
- The tension resultant force according to the material angle must be within the recommended resultant force range indicated in the drawing to maintain the tension detection accuracy.


4) When a load is applied on the flange-type tension detector, the roller moves slightly with a circular motion. Adjust the direction of the connectors so that the left and right tension detectors bend in the same direction.

- 5) When using in an environment with large temperature changes, provide a mechanism to absorb the changes in tension detection rollers from the changes in temperature so that the accuracy of tension detection is not affected.
- 6) When operating with a low tension, keep the mechanical loss as low as possible in order to minimize the tension control error.
- 7) The detection roller cannot be installed on only one side.
- Provide guide rollers on the front and rear of the tension detector so that the material angles θ1 and θ2 do not change.

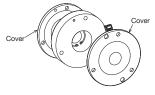
 When using in places with high levels of dust, etc., insert a V-ring etc., where the shaft enters the product to prevent the entry of dust, etc., into the product.



*: V-ring: Size must match user's roller size

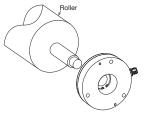
2. Installation methods

- 1) This product has internal self-aligning ball bearings that support the roller shaft.
- Provide a spigot (\$\$\phi60\$) on the main unit and socket on the machine frame to position, and then install the product onto the inner side or outer side of the machine frame.
- Use three M6 bolts (strength class 10.9 or more) to install the product onto the machine frame. (Tightening torque: 9 N•m to 12 N•m)
- The tightening torque for the cross-recessed screw on the product cover is 1.1 N•m to 1.8 N•m.

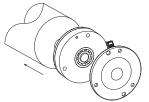

2.1 Mounting example (when installing on wall face)

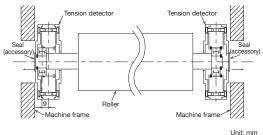
sion Controller

Common It

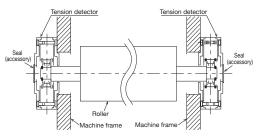

a) Loosen the cross-recessed screw on the product and open the cover (both sides).

b) Attach a snap ring on the side opposite the machine frame, and tighten the cross-recessed screws to close the cover.


c) Pass the roller through the product.


d) Mount the bearings into the roller. (Fix the shaft direction with the snap ring.)

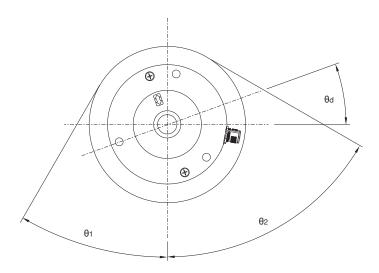
 e) Slide the bearings into the product in the direction of the arrow, and attach a snap ring on the opposite side of [b].
 Then, tighten the crossrecessed screws to close the cover.


- f) On the other piece of the product, slide the bearings into the product in the same way. Note that on this side, a snap ring is not attached. Tighten the cross-recessed screw and close the cover.
- g) Slide the product from step [f] in the shaft direction. Make it narrower than the machine frame width and insert it.

- h) When installing, attach the product's spigot (φ60) into the socket provided on the machine frame, and install with three M6 bolts.
- Take care to prevent the entry of dust, etc., when the product cover is opened. After installing, plug the cover hole with the enclosed seal.

2.2 Mounting example (when installing on outer side of wall)

- a) Loosen the cross-recessed screw on the product and open the cover (both sides).
- b) Attach the machine frame side snap ring, and tighten the cross-recessed screws to close the cover.
- c) Pass the roller through the product.
- d) Mount the bearings into the roller. (Fix the shaft direction with the snap ring, etc.)
- e) Slide the bearings into the product, and attach a snap ring on the opposite side of [b]. Then, tighten the cross-recessed screws to close the cover.
- f) Set the product spigot (φ60) into the socket provided on the machine frame, and tighten with three M6 bolts.
- g) Install the other piece of the product with the same procedure.
- · Mount the bearings into the roller.
- · Insert the product body into the outer ring of the bearings.
- Align the cover with the screw holes on the product unit, set the product spigot (φ60) into the socket provided on the machine hole, and install with the three M6 bolts.
- Take care to prevent the entry of dust, etc., when the product cover is opened. After installing, plug the cover hole with the enclosed seal.


• Selecting a tension detector

Depending on the installation conditions, selection may not be possible. In this case, change the conditions and perform the selection calculation again.

[Sample calculation]

Conditions

- Tension : F = 100 N
- Roll load : W = 5 kg
- Material angle $: \theta_1 = 30^\circ, \theta_2 = 60^\circ$
- Detector angle $: \theta d = 20^{\circ}$
- Number of detectors : N = 2

Detailed calculation

Temporarily select LX7-150FN	meeting Go = 150 N.
------------------------------	---------------------

(1) Load by tension	$GF = (\cos(\theta 1 + \theta d))$	
	= (cos(30° + 20 = 140.9 (N)	°) + cos(60° - 20°)) × 100
(2) Load by roll	$GW = \cos(\theta d) \times W$	
	= cos(20°) × 5 > = 46.0 (N)	× 9.8
(3) Total load	G = GF + GW	
	= 140.9 + 46.0	
	= 186.9 (N)	
(4) Hinge load		$\sin(\theta_2 - \theta_d)) \times F + \sin(\theta_d) \times W$
	= (sin(30° + 20° = 157.6 (N)	$(1) + \sin(60^{\circ} - 20^{\circ})) \times 100 + \sin(20^{\circ}) \times 5 \times 9.8$
(5) Judgment of calculation re		
The ratio of tension load to		
$\frac{G}{N \times Go} = \frac{140.9}{2 \times 150} =$		This is within the span adjustment range.
The ratio of roll load to the		
$\frac{\mathrm{GW}}{\mathrm{N}\times\mathrm{Go}} = \frac{46.0}{2\times150} =$	15.3% ≦ 80%	This is within the zero adjustment range.
The ratio of total load to the ratio of total load to the ratio of total load to the rate of the		
$\frac{G}{N \times Go} = \frac{186.9}{2 \times 150} =$	62.3% ≦ 80%	This is within the allowable load range. (Calculated supposing the tension of the
		material is 20%)
The ratio of hinge load to t		
$\frac{Gh}{N \times Go} = \frac{157.6}{2 \times 150} = 8$	52.5% ≦ 100%	This is within the allowable load range.

Selection result

Based on the above calculation, the use of 2 LX7-150FN tension detectors is recommended.

Tension Controller

Common Item

Common Item

- Corresponding Table for a Powder Clutch Brake and a Tension Controller with a Built-in Amplifier for the Clutch
- Mechanical Load Torque Calculation Method
- How to Determine the Moment of Inertia *J*
- Moment of Inertia J Calculation Quick Reference Table
- SI Unit and Non-SI Unit Conversion Table
- Product List
- List of Compatible Products
- How to Confirm the Date of Manufacture

Corresponding Table for a Powder Clutch Brake and a Tension Controller with a Built-in Amplifier for the Clutch

Details on tension controllers that can directly drive the powder clutch brake are as follows.

√ : Can directly drive

×: Insufficient drive current It is required to select a different product or an amplifier for the clutch.

	Tension Controller	LE7-40GU-L	LD-30FTA	LD-05TL	LD-40PSU	-	LD-10PAU-B	LE-50PAU
	Maximum output							
	current	2.70 A	3.00 A	0.50 A	3.80 A	1.00 A	1.00 A	4.00 A
Powder Clutch/Brake	Rated current							
ZKG-5AN	0.35 A	\checkmark	√	1	√	1	√	\checkmark
ZKG-10AN	0.47 A	1	1	1	√	1	1	\checkmark
ZKG-20AN	0.55 A	√	1	×	√	1	1	\checkmark
ZKG-50AN	0.80 A	\checkmark	\checkmark	×	√	√	\checkmark	\checkmark
ZKG-100AN	1.00 A	\checkmark	\checkmark	×	√	√	\checkmark	\checkmark
ZKB-0.06AN	0.46 A	\checkmark	\checkmark	\checkmark	√	1	\checkmark	\checkmark
ZKB-0.3AN	0.53 A	\checkmark	\checkmark	×	√	1	1	\checkmark
ZKB-0.6AN	0.81 A	\checkmark	\checkmark	×	√	1	1	\checkmark
ZKB-1.2BN	0.94 A	\checkmark	1	×	1	1	1	\checkmark
ZKB-2.5BN	1.24 A	\checkmark	1	×	1	×	×	\checkmark
ZKB-5BN	2.15 A	1	1	×	√	×	×	\checkmark
ZKB-10BN	2.40 A	√	1	×	√	×	×	\checkmark
ZKB-20BN	2.70 A	V	1	×	1	×	×	\checkmark
ZA-0.6A1	0.74 A	1	1	×	1	1	1	\checkmark
ZA-1.2A1	0.90 A	1	1	×	1	1	1	1
ZA-2.5A1	1.10 A	1	1	×	1	×	×	1
ZA-5A1	1.40 A	1	1	×	1	×	×	1
ZA-10A1	2.00 A	1	1	×	1	×	×	\checkmark
ZA-20A1	2.50 A	1	1	×	1	×	×	1
ZKG-5YN	0.35 A	√	1	1	1	1	1	1
ZKG-10YN	0.42 A	√	1	1	1	1	1	1
ZKG-20YN	0.50 A	√	1	1	√	1	√	√
ZKG-50YN	0.60 A	√	1	×	√	1	1	1
ZKB-0.06YN	0.46 A	√	1	1	√	√	√	1
ZKB-0.3YN	0.53 A	1	1	×	√	√	1	√
ZKB-0.6YN	0.81 A	√	1	×	 √	√ √	1	1
ZKB-1.2XN	0.94 A	√	1	×	 √	 √	1	1
ZKB-2.5XN	1.24 A	√	1	×	1	×	×	1
ZKB-5XN	2.15 A	√	√	×	 √	×	×	√
ZKB-10XN	2.40 A	√	√	×	 √	×	×	√
ZKB-20XN	2.70 A	 √	√	×	 √	×	×	 √
ZKB-2.5HBN	1.24 A	 √	√	×	√	×	×	√
ZKB-5HBN	2.15 A	√	√	×	 √	×	×	√
ZKB-10HBN	2.40 A	√ √	√	×	√ √	×	×	√
ZKB-20HBN	2.70 A	√ √	√	×	√ √	×	×	√
ZA-0.6Y	0.30 A	 √	√	~ ~	√ √			√
ZA-1.2Y1	0.39 A	√ √	√	√	 √	 √	√ √	√
ZA-2.5Y1	0.73 A	√ √	 √	×	√ √	 √	 √	√
ZA-5Y1	0.94 A	√ √	 √	×	√ √	 √	√ √	√
ZA-10Y1	1.21 A	√ √	√	×		×	√ ×	
ZA-1011 ZA-20Y1	1.90 A	ii			<i>√</i>			/
ZX-2011 ZX-0.3YN-24	0.40 A	√	√	×	√	×	×	√
		√ /	√	√ /	√	<i>√</i>	√	/
ZX-0.6YN-24	0.40 A	√	√	√ /	√	<i>√</i>	√	/
ZX-1.2YN-24	0.50 A	\checkmark	\checkmark	\checkmark	√	√	√	\checkmark

Tension Controller

Mechanical Load Torque Calculation Method

In many cases, it is difficult to calculate the net power required to operate a machine due to the setting of load conditions, transmission efficiency, etc. For this reason, it is often determined empirically. However, it is necessary to grasp the load torque to select the electromagnetic clutch, so the general formulas are listed below. Note that there are many uncertainties as described above, so values should also be based on experience.

1. From motor to torque

When the load torque is not clear and only the motor output is known, it depends on the following formula.

 $T_L = 9550 \frac{P}{N} \eta \cdots (1)$

where,

TL: Load torque (N·m)

P: Motor rated output (kW)

N: Clutch shaft rotation speed (r/min)

 η : Machine conduction efficiency from motor shaft to clutch shaft

2. Work to move up and down

(Example: Hoisting)

 $T_{L} = \frac{W \cdot V}{6.3 N \cdot \eta} \cdots (2)$

where,

- TL: Load torque (N·m)
- W: Total weight (N) of vertically moving part
- V: Velocity of vertically moving part (m/min)
- N: Rotation speed of shaft for obtaining torque (r/min)
- η: Efficiency

(Example: Approx. 0.95 per pair of gears, chains, belts etc.)

Note: This formula can also be applied to lathe spindles that do similar work.

In this case W should be cutting resistance (N).

3. Horizontal motion work with friction

(Example: Table feed, for crane run)

Ti –	µ•₩•V	 	 	 (3)
11 -	6.3N•η			(3)

where,

TL: Load torque (N·m)

μ: Running resistance (friction coefficient)

Example: Approx. 0.005 for ball bearings Approx. 0.15 on bed surface *

- W: Total weight of horizontal moving parts (N)
- V: Speed (m/min) of horizontal moving parts
- N: Rotation speed of shaft for obtaining torque (r/min)

η: Efficiency
 (Example: Approx. 0.95 per pair of gears, chains, belts etc.)

Note: * may be even larger depending on the assembling/ finishing condition of the machine. **Fension Controller**

How to Determine the Moment of Inertia J

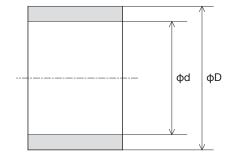
The moment of inertia J (kgm²) of the rotating body can be obtained by the following equation, where the weight of the rotating body is M (kg) and the unit of length is (m).

1. Rotation body J

(1) Solid cylindrical body

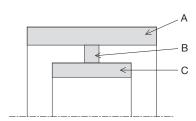
$J = \frac{1}{8} \cdot M \cdot D^2 \cdots \cdots$
--

where, J: Moment of inertia (kgm²) M: Weight (kg) D: Outside diameter of rotating object (m)



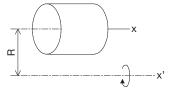
(2) Hollow cylindrical body

where,


d: Inside diameter of rotating object (m)

(3) Complicated shape

When the shape is as shown below, divide it into A, B, and C, find J of each part, and sum them up. That is,


 $J = JA + JB + JC \cdots (3)$

(4) Any axis x' parallel to the center axis x passing through the center of gravity of an object

where,

Jx: Moment of inertia of object with respect to axis x (kgm²) R: Distance between axes x and x' (m)

2. J for linear motion

(1) General formula

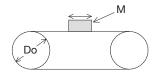
where,

- M: Weight of linearly moving object (kg)
- V: Speed of linearly moving object (m/min)
- N: Rotation speed of the rotating shaft for obtaining *J* (r/min)
- (2) J of various linear motion bodies
 - (1) When the object moves linearly with a screw [value on screw axis]

$$J = \frac{M}{4} \left(\frac{P}{\pi}\right)^2 \cdots (6)$$

where,

M: Weight of linearly moving object (kg)

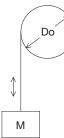


(2) Conveyor [value on Do axis]

(However, J of pulley/belt etc. is not included.)

where,

Do: Diameter of pulley or the like (m)



(3) When the weight moves [value on drum axis] by a rope etc. such as a crane/winch, etc.

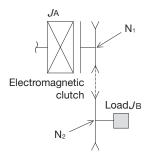
where,

Do: Drum diameter (m)

3. Conversion of J to clutch shaft

To convert J_B on the N2 shaft to the clutch shaft value as shown in the following figure, do as shown in the figure below.

$$JA = \left(\frac{N_2}{N_1}\right)^2 JB \cdots (9)$$


where,

JA: J at the clutch shaft (kgm²)

JB: J on N2 shaft (load shaft) (kgm²)

N1: Rotation speed on the clutch shaft (r/min)

N2: Rotation speed on the JB shaft (r/min)

Fension Controller

Moment of Inertia J Calculation **Quick Reference Table**

This table shows J (kgm²) per 10 mm length at ϕ 10 to ϕ 509.

1. Steel with a specific gravity $\rho = 7.85$ is shown.

2. In case of hollow cylindrical body, subtract J of the inside diameter from J of the outside diameter.

3. In the case of the following materials, apply the relevant coefficients to this table.

Casting: × 0.92 Brass: × 1.14 Aluminum: × 0.35

4. How to use the table

Example:

The moment of inertia of a solid cylindrical body with a diameter of 352 mm and a thickness of 25 mm is determined from the table.

Answer:

From the intersection of row 350 on the left and column 2 at the top, 1.1832×10^{-1} kgm² is obtained, which is multiplied by the thickness $\frac{25}{10}$, hence:

 $J = 1.1832 \times 10^{-1} \times \frac{25}{10} = 0.2958 \text{ kgm}^2.$

Diameter										<i>J</i> (k	(gm²)									
(mm)	0		1	1		2	3		4			5		6		7	6	;		9
10	7.7	×10 ⁻⁸	1.13	×10 ⁻⁷	1.6	×10 ⁻⁷	2.2	×10 ⁻⁷	2.96	×10 ⁻⁷	3.9	×10 ⁻⁷	5.05	×10 ⁻⁷	6.44	×10 ⁻⁷	8.09	×10 ⁻⁷	1	×10 ⁻⁶
20	1.23	×10 ⁻⁶	1.5	×10 ⁻⁶	1.81	×10 ⁻⁶	2.16	×10 ⁻⁶	2.56	×10 ⁻⁶	3.01	×10 ⁻⁶	3.52	×10 ⁻⁶	4.1	×10 ⁻⁶	4.74	×10 ⁻⁶	5.45	×10 ⁻⁶
30	6.24	×10 ⁻⁶	7.12	×10 ⁻⁶	8.08	×10 ⁻⁶	9.14	×10 ⁻⁶	1.03	×10 ⁻⁵	1.157	×10 ⁻⁵	1.294	×10 ⁻⁵	1.444	×10 ⁻⁵	1.607	×10 ⁻⁵	1.783	×10 ⁻⁵
40	1.973	×10 ⁻⁵	2.178	×10 ⁻⁵	2.398	×10 ⁻⁵	2.635	×10 ⁻⁵	2.889	×10 ⁻⁵	3.16	×10 ⁻⁵	3.451	×10 ⁻⁵	3.761	×10 ⁻⁵	4.091	×10 ⁻⁵	4.443	×10 ⁻⁵
50	4.817	×10 ⁻⁵	5.214	×10 ⁻⁵	5.635	×10 ⁻⁵	6.081	×10 ⁻⁵	6.553	×10 ⁻⁵	7.052	×10 ⁻⁵	7.579	×10 ⁻⁵	8.135	×10 ⁻⁵	8.721	×10 ⁻⁵	9.339	×10 ⁻⁵
60	9.988	×10 ⁻⁵	1.067	×10 ⁻⁴	1.139	×10 ⁻⁴	1.214	×10 ⁻⁴	1.293	×10 ⁻⁴	1.376	×10 ⁻⁴	1.462	×10 ⁻⁴	1.553	×10 ⁻⁴	1.648	×10 ⁻⁴	1.747	×10 ⁻⁴
70	1.85	×10 ⁻⁴	1.958	×10 ⁻⁴	2.071	×10 ⁻⁴	2.189	×10 ⁻⁴	2.311	×10 ⁻⁴	2.438	×10 ⁻⁴	2.571	×10 ⁻⁴	2.709	×10 ⁻⁴	2.853	×10 ⁻⁴	3.002	×10 ⁻⁴
80	3.157	×10 ⁻⁴	3.317	×10 ⁻⁴	3.484	×10 ⁻⁴	3.657	×10 ⁻⁴	3.837	×10 ⁻⁴	4.023	×10 ⁻⁴	4.216	×10 ⁻⁴	4.415	×10 ⁻⁴	4.622	×10 ⁻⁴	4.835	×10 ⁻⁴
90	5.056	×10 ⁻⁴	5.285	×10 ⁻⁴	5.521	×10 ⁻⁴	5.765	×10 ⁻⁴	6.017	×10 ⁻⁴	6.277	×10 ⁻⁴	6.546	×10 ⁻⁴	6.823	×10 ⁻⁴	7.18	×10 ⁻⁴	7.403	×10 ⁻⁴
100	7.707	×10 ⁻⁴	8.02	×10 ⁻⁴	8.342	×10 ⁻⁴	8.674	×10 ⁻⁴	9.016	×10 ⁻⁴	9.368	×10 ⁻⁴	9.73	×10 ⁻⁴	1.01	×10 ⁻³	1.048	×10 ⁻³	1.088	×10 ⁻³
110	1.128	×10 ⁻³	1.17	×10 ⁻³	1.213	×10 ⁻³	1.257	×10 ⁻³	1.302	×10 ⁻³	1.348	×10 ⁻³	1.395	×10 ⁻³	1.444	×10 ⁻³	1.494	×10 ⁻³	1.545	×10 ⁻³
120	1.598	×10 ⁻³	1.652	×10 ⁻³	1.707	×10 ⁻³	1.764	×10 ⁻³	1.822	×10 ⁻³	1.882	×10 ⁻³	1.942	×10 ⁻³	2.005	×10 ⁻³	2.069	×10 ⁻³	2.134	×10 ⁻³
130	2.201	×10 ⁻³	2.27	×10 ⁻³	2.34	×10 ⁻³	2.411	×10 ⁻³	2.485	×10 ⁻³	2.56	×10 ⁻³	2.636	×10 ⁻³	2.715	×10 ⁻³	2.795	×10 ⁻³	2.877	×10 ⁻³
140	2.961	×10 ⁻³	3.046	×10 ⁻³	3.133	×10 ⁻³	3.223	×10 ⁻³	3.314	×10 ⁻³	3.407	×10 ⁻³	3.502	×10 ⁻³	3.599	×10 ⁻³	3.698	×10 ⁻³	3.799	×10 ⁻³
150	3.902	×10 ⁻³	4.007	×10 ⁻³	4.114	×10 ⁻³	4.223	×10 ⁻³	4.335	×10 ⁻³	4.448	×10 ⁻³	4.564	×10 ⁻³	4.682	×10 ⁻³	4.803	×10 ⁻³	4.926	×10 ⁻³
160	5.051	×10 ⁻³	5.178	×10 ⁻³	5.308	×10 ⁻³	5.44	×10 ⁻³	5.575	×10 ⁻³	5.712	×10 ⁻³	5.852	×10 ⁻³	5.994	×10 ⁻³	6.139	×10 ⁻³	6.287	×10 ⁻³
170	6.437	×10 ⁻³	6.59	×10 ⁻³	6.745	×10 ⁻³	6.903	×10 ⁻³	7.064	×10 ⁻³	7.228	×10 ⁻³	7.395	×10 ⁻³	7.564	×10 ⁻³	7.737	×10 ⁻³	7.912	×10 ⁻³
180	8.09	×10 ⁻³	8.272	×10 ⁻³	8.456	×10 ⁻³	8.643	×10 ⁻³	8.834	×10 ⁻³	9.027	×10 ⁻³	9.224	×10 ⁻³	9.424	×10 ⁻³	9.627	×10 ⁻³	9.834	×10 ⁻³
190	1.004	×10 ⁻²	1.026	×10 ⁻²	1.047	×10 ⁻²	1.069	×10 ⁻²	1.092	×10 ⁻²	1.114	×10 ⁻²	1.137	×10 ⁻²	1.161	×10 ⁻²	1.184	×10 ⁻²	1.209	×10 ⁻²
200	1.233	×10 ⁻²	1.258	×10 ⁻²	1.283	×10 ⁻²	1.309	×10 ⁻²	1.335	×10 ⁻²	1.361	×10 ⁻²	1.388	×10 ⁻²	1.415	×10 ⁻²	1.443	×10 ⁻²	1.47	×10 ⁻²
210	1.499	×10 ⁻²	1.528	×10 ⁻²	1.557	×10 ⁻²	1.586	×10 ⁻²	1.616	×10 ⁻²	1.647	×10 ⁻²	1.678	×10 ⁻²	1.709	×10 ⁻²	1.741	×10 ⁻²	1.773	×10 ⁻²
220	1.805	×10 ⁻²	1.838	×10 ⁻²	1.872	×10 ⁻²	1.906	×10 ⁻²	1.94	×10 ⁻²	1.975	×10 ⁻²	2.011	×10 ⁻²	2.046	×10 ⁻²	2.083	×10 ⁻²	2.119	×10 ⁻²
230	2.157	×10 ⁻²	2.194	×10 ⁻²	2.233	×10 ⁻²	2.271	×10 ⁻²	2.311	×10 ⁻²	2.35	×10 ⁻²	2.391	×10 ⁻²	2.431	×10 ⁻²	2.473	×10 ⁻²	2.515	×10 ⁻²
240	2.557	×10 ⁻²	2.6	×10 ⁻²	2.643	×10 ⁻²	2.687	×10 ⁻²	2.732	×10 ⁻²	2.777	×10 ⁻²	2.822	×10 ⁻²	2.869	×10 ⁻²	2.915	×10 ⁻²	2.963	×10 ⁻²
250	3.01	×10 ⁻²	3.059	×10 ⁻²	3.108	×10 ⁻²	3.158	×10 ⁻²	3.208	×10 ⁻²	3.259	×10 ⁻²	3.31	×10 ⁻²	3.362	×10 ⁻²	3.415	×10 ⁻²	3.468	×10 ⁻²
260	3.522	×10 ⁻²	3.576	×10 ⁻²	3.631	×10 ⁻²	3.687	×10 ⁻²	3.744	×10 ⁻²	3.801	×10 ⁻²	3.858	×10 ⁻²	3.917	×10 ⁻²	3.976	×10 ⁻²	4.035	×10 ⁻²
270	4.096	×10 ⁻²	4.157	×10 ⁻²	4.218	×10 ⁻²	4.281	×10 ⁻²	4.344	×10 ⁻²	4.408	×10 ⁻²	4.472	×10 ⁻²	4.537	×10 ⁻²	4.603	×10 ⁻²	4.67	×10 ⁻²
280	4.737	×10 ⁻²	4.805	×10 ⁻²	4.874	×10 ⁻²	4.943	×10 ⁻²	5.014	×10 ⁻²	5.084	×10 ⁻²	5.156	×10 ⁻²	5.299	×10 ⁻²	5.302	×10 ⁻²	5.376	×10 ⁻²
290	5.451	×10 ⁻²	5.526	×10 ⁻²	5.603	×10 ⁻²	5.68	×10 ⁻²	5.758	×10 ⁻²	5.837	×10 ⁻²	5.916	×10 ⁻²	5.996	×10 ⁻²	6.078	×10 ⁻²	6.16	×10 ⁻²
300	6.242	×10 ⁻²	6.326	×10 ⁻²	6.411	×10 ⁻²	6.496	×10 ⁻²	6.582	×10 ⁻²	6.669	×10 ⁻²	6.757	×10 ⁻²	6.846	×10 ⁻²	6.935	×10 ⁻²	7.026	×10 ⁻²
310	7.117	×10 ⁻²	7.21	×10 ⁻²	7.303	×10 ⁻²	7.397	×10 ⁻²	7.492	×10 ⁻²	7.588	×10 ⁻²	7.685	×10 ⁻²	7.782	×10 ⁻²	7.881	×10 ⁻²	7.981	×10 ⁻²
320	8.081	×10 ⁻²	8.183	×10 ⁻²	8.285	×10 ⁻²	8.388	×10 ⁻²	8.493	×10 ⁻²	8.598	×10 ⁻²	8.704	×10 ⁻²	8.812	×10 ⁻²	8.92	×10 ⁻²	9.029	×10 ⁻²
330	9.14	×10 ⁻²	9.251	×10 ⁻²	9.363	×10 ⁻²	9.476	×10 ⁻²	9.591	×10 ⁻²	9.706	×10 ⁻²	9.823	×10 ⁻²	9.94	×10 ⁻²	1.0059	×10 ⁻¹	1.0178	×10 ⁻¹
340	1.0299	×10 ⁻¹	1.0421	×10 ⁻¹	1.0543	×10 ⁻¹	1.0667	×10 ⁻¹	1.0792	×10 ⁻¹	1.0918	8 ×10 ⁻¹	1.1045	5 ×10 ⁻¹	1.117	4 ×10 ⁻¹	1.1303	×10 ⁻¹	1.1433	×10 ⁻¹
350	1.1565	×10 ⁻¹	1.1698	×10 ⁻¹	1.1832	×10 ⁻¹	1.1967	×10 ⁻¹	1.2103	×10 ⁻¹	1.224	×10 ⁻¹	1.2379	×10 ⁻¹	1.258	1 ×10 ⁻¹	1.2659	×10 ⁻¹	1.2801	×10 ⁻¹
360	1.2944	×10 ⁻¹	1.3089	×10 ⁻¹	1.3234	×10 ⁻¹	1.3381	×10 ⁻¹	1.3529	×10 ⁻¹	1.3679	9 ×10 ⁻¹	1.3829	×10 ⁻¹	1.398	1 ×10 ⁻¹	1.4134	×10 ⁻¹	1.4288	×10 ⁻¹
370	1.4444	×10 ⁻¹	1.4601	×10 ⁻¹	1.4759	×10 ⁻¹	1.4918	×10 ⁻¹	1.5079	×10 ⁻¹	1.524	×10 ⁻¹	1.5404		1.556		1.5734	×10 ⁻¹	1.5901	×10 ⁻¹
380	1.607	×10 ⁻¹	1.6239	×10 ⁻¹	1.6411	×10 ⁻¹	1.6583	×10 ⁻¹	1.6757	×10 ⁻¹	1.693	3 ×10 ⁻¹	1.7109) ×10 ⁻¹	1.728	7 ×10 ⁻¹	1.7466	×10 ⁻¹	1.7647	×10 ⁻¹
390	1.7829	×10 ⁻¹	1.8013	×10 ⁻¹	1.8198	×10 ⁻¹	1.8384	×10 ⁻¹	1.8572	×10 ⁻¹	1.876	1 ×10 ⁻¹	1.8952	2 ×10 ⁻¹	1.914	4 ×10 ⁻¹	1.9338	×10 ⁻¹	1.9533	×10 ⁻¹
400	1.9729	×10 ⁻¹	1.9927	×10 ⁻¹	2.0127	×10 ⁻¹	2.0328	×10 ⁻¹	2.053	×10 ⁻¹	2.073	4 ×10 ⁻¹	2.094	×10 ⁻¹	2.114	7 ×10 ⁻¹	2.1356	×10 ⁻¹	2.1566	×10 ⁻¹
410	2.1777	×10 ⁻¹	2.1991	×10 ⁻¹	2.2205	×10 ⁻¹	2.2422	×10 ⁻¹	2.264	×10 ⁻¹	2.285	9 ×10 ⁻¹	2.308	×10 ⁻¹	2.330	3 ×10 ⁻¹	2.3528	×10 ⁻¹	2.3753	×10 ⁻¹
420	2.3981	×10 ⁻¹	2.421	×10 ⁻¹	2.4441	×10 ⁻¹	2.4674	×10 ⁻¹	2.4908	×10 ⁻¹	2.514	4 ×10 ⁻¹	2.538	×10 ⁻¹	2.562	×10 ⁻¹	2.5861	×10 ⁻¹	2.6104	×10 ⁻¹
430	2.6348	×10 ⁻¹	2.6594	×10 ⁻¹	2.6841	×10 ⁻¹	2.7091	×10 ⁻¹	2.7342	×10 ⁻¹	2.759	5 ×10 ⁻¹	2.7849) ×10 ⁻¹	2.810	6 ×10 ⁻¹	2.8364	×10 ⁻¹	2.8624	×10 ⁻¹
440	2.8886	×10 ⁻¹	2.9149	×10 ⁻¹	2.9414	×10 ⁻¹	2.9681	×10 ⁻¹	2.995	×10 ⁻¹	3.022	1 ×10 ⁻¹	3.0494	4 ×10 ⁻¹	3.076	8 ×10 ⁻¹	3.1044	×10 ⁻¹	3.1322	×10 ⁻¹
450	3.1602	×10 ⁻¹	3.1884	×10 ⁻¹	3.2168	×10 ⁻¹	3.2454	×10 ⁻¹	3.2741	×10 ⁻¹	3.303	1 ×10 ⁻¹	3.3322	2 ×10 ⁻¹	3.361	5 ×10 ⁻¹	3.391	×10 ⁻¹	3.4208	×10 ⁻¹
460	3.4507	×10 ⁻¹	3.4808	×10 ⁻¹	3.5111	×10 ⁻¹	3.5416	×10 ⁻¹	3.5723	×10 ⁻¹	3.603	2 ×10 ⁻¹	3.6342	2 ×10 ⁻¹	3.665	5 ×10 ⁻¹	3.697	×10 ⁻¹	3.7287	×10 ⁻¹
470	3.7606	×10 ⁻¹	3.7927	×10 ⁻¹	3.8251	×10 ⁻¹	3.8576	×10 ⁻¹	3.8903	×10 ⁻¹	3.923	2 ×10 ⁻¹	3.9564	4 ×10 ⁻¹	3.989	7 ×10 ⁻¹	4.0233	×10 ⁻¹	4.0571	×10 ⁻¹
480	4.0911	×10 ⁻¹	4.1253	×10 ⁻¹	4.1597	×10 ⁻¹	4.1943	×10 ⁻¹	4.2291	×10 ⁻¹	4.2642	2 ×10 ⁻¹	4.2995	5 ×10-1	4.335	×10 ⁻¹	4.3707	×10 ⁻¹	4.4066	×10 ⁻¹
490	4.4428	×10 ⁻¹	4.4792	×10 ⁻¹	4.5158	×10 ⁻¹	4.5526	×10 ⁻¹	4.5886	×10 ⁻¹	4.626	9 ×10 ⁻¹	4.6644	4 ×10 ⁻¹	4.702	1 ×10 ⁻¹	4.7401	×10 ⁻¹	4.7783	×10 ⁻¹
500	4.8167	×10 ⁻¹	4.8554	×10 ⁻¹	4.8942	×10 ⁻¹	4.9334	×10 ⁻¹	4.9727	×10 ⁻¹	5.012	3 ×10 ⁻¹	5.052	×10 ⁻¹	5.092	2 ×10 ⁻¹	5.1325	×10 ⁻¹	5.173	×10 ⁻¹

How to calculate J

Steel: $J = D4 \times L \times 775$ [kgm²] Brass: $J = D4 \times L \times 880$ [kgm²] Aluminum: $J = D4 \times L \times 270$ [kgm²]

where, D: diameter (m), L: length (m)

SI Unit and Non-SI Unit Conversion Table

The transition to SI units has been carried out since October 1, 1999, but some terms still require conversion. The following reference table shows conversion factors related to clutches and brakes.

Physical quantity	Non-SI unit (symbol)	SI unit (symbol)	Conversion relation
Length	Micron (μ)	Meter (m)	1 μ = 1 μm
Frequency	Cycle (c) Cycle per second (c/s)	Hertz (Hz)	1c = 1 c/s = 1 Hz
Magnetic field strength	Amperage per meter (AT/m) Oersted (Oe)	Ampere meter (A/m)	1 AT/m = 1 A/m 10e ≒ 79 A/m
Magnetomotive force	Ampere-turn (AT)	Ampere (A)	1 AT = 1 A
Magnetic flux density	Gamma (γ) Gauss (G)	Tesla (T)	1 γ = 1 nT 1 G = 100 μT
Magnetic flux density	Maxwell (Mx)	Weaver (Wb)	1 Mx = 10 nWb
Sound pressure level	Phone	Decibel (dB)	1 phone = 1 dB
Force (load and tension)	Weight kg (kgf) Weight gram (gf) Weight ton (tf)	Newton (N)	1 kgf ≒ 9.8 N 1 gf ≒ 9.8 mN 1 tf ≒ 9.8 kN
Moment of force (torque)	Weight kilogram meter (kgf·m)	Newton meter (N·m)	1 kgf·m ≒ 9.8 N·m
Pressure	Weight kilogram per square meter (kgf/m ²)	Pascal (Pa)	1 kgf/m ² ≒ 9.8 Pa
Stress	Weight kilogram per square meter (kgf/m ²)	Pascal (Pa)	1 kgf/m ² ≒ 9.8 Pa
Work (energy)	Weight kilogram meter (kgf/m)	Joule (J)	1 kgf·m ≒ 9.8 J
Rate	Weight kilogram meter per second (kgf/m/s)	Watt (W)	1 kgf·m/s ≒ 9.8 W
Calorie	Calorie (cal)	Joule (J)	1 cal ≒ 4.2 J
Rotation	Rotation speed (rpm)	Rotation speed (r/min)	1 rpm = 1 r/min
Time	Second (sec) Minute (min) (reference) Hour (Hr) (reference)	Second (s) Minute (min) Hour (h)	1 sec = 1 s 1 min = 1 min 1 Hr = 1 h
Moment of inertia	GD ² (kgfm ²)	Moment of inertia (kgm ²)	1 kgfm ² ≒ 0.25 kgm ²
Temperature	Degree (°C)	Celsius degree (°C)	1°C = 1°C
Temperature difference	Degree (deg)	Celsius degree (°C)	1 deg = 1°C
Weight	Weight kg (kgf)	Kilogram (kg)	1 kgf = 1 kg
	-		

For details other than the above, refer to ISO 1000.

Product List (clutch/brake)

		Туре	Model name	Page				
			ZKG-5AN					
			ZKG-10AN					
			ZKG-20AN	A-10				
Ē		Natural cooling type	ZKG-50AN					
	Ę.	Natural cooling type	ZKG-100AN					
	Protruding shaft		ZKB-0.06AN					
	ding		ZKB-0.3AN	A-12				
	otru		ZKB-0.6AN					
lutcl	7		ZKB-1.2BN					
ler c			ZKB-2.5BN	A-14				
Powder clutch		Natural cooling type (Forced air cooling)	ZKB-5BN					
<u>L</u>			ZKB-10BN	A-16				
			ZKB-20BN	A-10				
			ZA-0.6A1					
	aft		ZA-1.2A1					
	h-sh		ZA-2.5A1	. 10				
	Through-shaft	Natural cooling type	ZA-5A1	A-18				
	Thr		ZA-10A1					
			ZA-20A1					

		Туре	Model name	Page					
			ZKG-5YN						
			ZKG-10YN						
			ZKG-20YN	A-20					
		Natural cooling type	ZKG-50YN						
			ZKB-0.06YN						
			ZKB-0.3YN	A-22					
	haft		ZKB-0.6YN						
	Protruding shaft		ZKB-1.2XN						
	rudi		ZKB-2.5XN	A-24					
0	Prot	Natural cooling type (Forced air cooling)	ZKB-5XN						
			ZKB-10XN						
Powder brake			ZKB-20XN	A-26					
der b			ZKB-2.5HBN						
owo		Thermoblesk assling	ZKB-5HBN	A 00					
ц.		Thermoblock cooling	ZKB-10HBN	A-28					
			ZKB-20HBN						
			ZA-0.6Y						
			ZA-1.2Y1	A-30					
	4		ZA-2.5Y1	A-30					
	Through-shaft	Natural cooling type	ZA-5Y1						
	-µbr		ZA-10Y1	A 00					
	hrou		ZA-20Y1	A-32					
			ZX-0.3YN-24						
		Natural cooling type Thin type	ZX-0.6YN-24	A-34					
		Thin type	ZX-1.2YN-24						

Tension Controller

Product List (tension controller)

Туре			Model name	Outline	Page						
туре		_	LE7-40GU-L	Power supply input: 100 to 240 V AC, 2.7 A built-in clutch amplifier	B-4						
			LE-10WTA-CCL	Power supply input: 100 to 240 v AG, 2.7 A built-in cutch ampliner Power supply input: 24 V DC (1 LM-10WA-TAD tension detector input adapter included)	B-4 B-16						
			LE-30CTN		D-10						
			Scheduled completion/ order production*1	Power supply input: 100 to 240 V AC, 3.0 A built-in clutch amplifier	B-21						
			LE-40MTA Scheduled completion/ order production* ¹	Power supply input: 100 to 240 V AC, 4.0 A built-in clutch amplifier, standard type, Japanese display							
Feedback tension controller			LE-40MTB Scheduled completion/ order production*1	Power supply input: 100 to 240 V AC, 4.0 A built-in clutch amplifier, high-function type, Japanese display							
		LE-40MTA-E Scheduled completion/ order production*1	Power supply input: 100 to 240 V AC, 4.0 A built-in clutch amplifier, standard type, English display	B-28							
		LE-40MTB-E Scheduled completion/ order production*1	Power supply input: 100 to 240 V AC, 4.0 A built-in clutch amplifier, high-function type, English display								
			LE-60EC	Extension cable for LE-40MTB (LE-40MTB-E) (for CC-Link extension block)							
			LE-40MD Scheduled completion/ order production*1	Reel diameter calculation unit (used in combination with LE-40MTB or LE-40MTB-E)	B-37						
	_		LD-10WTB-CCL	Power supply input: 24 V DC (1 LD-10WTB-DCA reel diameter calculation adapter included)	B-16						
			LD-30FTA								
Open-loop type tension controller			Scheduled completion/ order production* ²	Power supply input: 100 to 240 V AC, 3.0 A built-in clutch amplifier, integrated thickness type	B-40						
			LD-05TL Scheduled completion/ order production* ²	Power supply input: 24 V DC, 0.5 A built-in clutch amplifier, touch lever (potentiometer) type	B-46						
			LD-40PSU Scheduled completion/ order production* ²	Power supply input: 100 to 240 V AC, clutch amplifier output: 3.8 A, control type: constant-voltage control type	B-50						
Clutch amplifier			LD-10PAU-A	Power supply input: 24 V DC, clutch amplifier output: 1.0 A, control type: constant-current control type	B-54						
			LD-10PAU-B	Power supply input: 24 V DC, clutch amplifier output: 1.0 A, control type: constant-current control type, with inter-station communication function (RS-485)							
			LE-50PAU	Power supply input: 100 to 240 V AC, clutch amplifier output: 4.0 A, control type: constant- current constant-voltage control type	B-48						
			LM-10WA-CCL	Power supply input: 24 V DC, detector input: up to 4 shafts (1 LM-10WA-TAD tension detect input adapter included)							
Tension Meter			LM-10PD								
			LM-10TA	Tension amplifier, power supply input: 24 V DC, detector input: 1 shaft	B-63						
		Ð	LX-005TD	Rated load: 50N							
		type	LX-015TD	Rated load: 150N							
		Stationary ty	LX-030TD	Rated load: 300N	B-65						
Tension detector	Ird	tior	LX-050TD	Rated load: 500N	_						
and explosion-proof	Standard	Sta	LX-100TD LX-200TD	Rated load: 1000N	-						
safety barrier	Sta	0	LX7-50FN17	Rated load: 2000N Rated load: 50N							
		typ	LX7-150FN17	Rated load: 150N	-						
		Flange type	LX7-300FN17	Rated load: 300N	B-69						
		Flar	LX7-500FN17	Rated load: 500N	-						
			LE7-DCA	Reel diameter calculation option (for LE7-40GU-L)	B-9						
			LE7-CCL	Network option (for LE7-40GU-L)	B-13						
			LE7-ATT	Attachment (for LE7-40GU-L)	B-15						
			LM-10WA-TAD	Tension detector input adapter (for LE-10WTA-CCL, LD-10WTB-CCL, and LM-10WA-CCL)	B-18, 5						
			LD-10WTB-DCA	Reel diameter calculation adapter (for LE-10WTA-CCL and LD-10WTB-CCL)	B-18						
			LM-10WA-USB	USB interface (for LE-10WTA-CCL, LD-10WTB-CCL, and LM-10WA-CCL)	B-18						
Option			LM-10WA-485	RS-485 communication interface (for LE-10WTA-CCL, LD-10WTB-CCL, and LM-10WA-CCL)	B-18						
Οριιση		LD-30FTA-1AD Scheduled completion/ order production* ²	Analog input option board for LD-30FTA	B-41							
			LD-8EEPROM	Memory cassette (for LE-10WTA-CCL, LD-10WTB-CCL, LM-10WA-CCL, LE7-40GU-L, and LD-10PAU-□)	B-53						
			LD-10PAU-CAB1M	Digital input cable (1 m) for LD-10PAU-□	-						
			LX-030PLT	Mounting plate for pillow block (for LX-005TD, 015TD, 030TD, and 050TD)	1						
			,		B-65						

List of Compatible Products (clutch/brake)*1

 $\sqrt{:}$ Supported \Box : Excluded from the standard

	Туре		Model name			E	D 110	KC
		1			EMC	LVD	RoHS	
			ZKG-5AN	/			1	
			ZKG-10AN	√			1	
			ZKG-20AN	√			1	
		Natural cooling type	ZKG-50AN				1	
			ZKG-100AN	√			1	
	Protruding		ZKB-0.06AN	/			1	
	shaft		ZKB-0.3AN	/			1	
			ZKB-0.6AN	√			1	
			ZKB-1.2BN	1			1	
Powder clutch		Natural cooling type	ZKB-2.5BN	1			1	
		(forced air cooling	ZKB-5BN	√			1	
		type)	ZKB-10BN	√			1	
			ZKB-20BN	1			1	
			ZA-0.6A1	1			1	
			ZA-1.2A1	1			1	
	Through shaft	Natural cooling type	ZA-2.5A1	√			1	
		Natural cooling type	ZA-5A1	1			1	
			ZA-10A1	1			1	
			ZA-20A1	1			1	
			ZKG-5YN	1			√	
		Natural cooling type	ZKG-10YN	\checkmark			√	
			ZKG-20YN	\checkmark			1	
			ZKG-50YN	1			1	
			ZKB-0.06YN	1			1	
			ZKB-0.3YN	1			1	
			ZKB-0.6YN	1			1	
	Protruding	Natural cooling type (forced air cooling type)	ZKB-1.2XN	1			1	
	shaft		ZKB-2.5XN	1			1	
			ZKB-5XN	1			1	
			ZKB-10XN	1			1	
			ZKB-20XN	1			1	
Powder brake			ZKB-2.5HBN	1			1	
		Thermoblock cooling	ZKB-5HBN	1			1	
		type	ZKB-10HBN	1			1	
			ZKB-20HBN	1			J	
			ZA-0.6Y	1				
			ZA-1.2Y1	1			1	
			ZA-2.5Y1				J	
		Natural cooling type	ZA-5Y1	√			 √	
	Through		ZA-10Y1	√			 √	
	shaft		ZA-20Y1	 √			 √	
			ZX-0.3YN-24	 			 √	
		Natural cooling, thin	ZX-0.6YN-24	 √				
		type	ZX-1.2YN-24				√	
			L/-1.2111-24	√			√	

UL/cUL standards are not complied with.

*1: Status of support as of October 1, 2023

Tension Controller

Tension Detector

List of Compatible Products (tension controller, etc.)*3

Model name

LE7-40GU-L

LE-30CTN Scheduled completion/

LE-10WTA-CCL

Scheduled completion/order production¹¹ : Scheduled completion of production at the end of March 2024 (Built-to-order production from October 2021)

mpletion/order production*2 : Scheduled completion of production at the end of September 2025 (Built-to-order production from April 2024)

√

√

√

√: Supported □: Excluded from the standard -: Not supported

LVD

√

√

CE

EMC

 $\sqrt{}$

√

√

KC

√

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

√ □

 \checkmark

√

 \checkmark

 $\sqrt{}$

RoHS

 $\sqrt{}$

 \checkmark

J

			order production*1	v	N N	v	v	
			LE-40MTA Scheduled completion/ order production* ¹	-	_	-	_	
Feedb	ack tension co	ntroller	LE-40MTB Scheduled completion/ order production* ¹	_	_	_	_	
			LE-40MTA-E Scheduled completion/ order production*1	_	_	_	_	
			LE-40MTB-E Scheduled completion/ order production* ¹	_	_	_	_	
			LE-60EC	_			_	
			LE-40MD					
			Scheduled completion/ order production*1	-	_	_	_	
			LD-10WTB-CCL	1	1		1	
Open-	loop tension co	ontroller	LD-30FTA Scheduled completion/ order production* ²	_	_	_	_	
			LD-05TL Scheduled completion/ order production* ²	-	-		-	
			LD-40PSU Scheduled completion/ order production* ²	-	_	-	-	
	Clutch amplifie	r	LD-10PAU-A	-	_		_	
			LD-10PAU-B	1	1		\checkmark	
			LE-50PAU	-	_	_	_	
			LM-10WA-CCL	1	1		√	
	Tension meter		LM-10PD	-	_	_	_	
	1	1	LM-10TA	-	-		-	
			LX-005TD	1			/	
			LX-015TD	1			1	
		Stationary type	LX-030TD	1			1	
			LX-050TD	1			1	
Tension detector	Standard		LX-100TD	/			1	
			LX-200TD LX7-50FN17	/ /			/ /	
			LX7-150FN17	1			√	
		Flange type	LX7-300FN17	<i>√</i>			√	
			LX7-500FN17	√ √			√ √	
			LE7-DCA	 √	√		 √	
			LE7-CCL					
			LE7-ATT	<u>√</u>				
			LM-10WA-TAD		√			
			LD-10WTB-DCA	 √	 √		 √	
			LM-10WA-USB	√ √	 √		 √	
	O 11		LM-10WA-485	 √	√		 √	
	Option		LD-30FTA-1AD Scheduled completion/ order production* ²	_	_		_	
			LD-8EEPROM	1	1		1	
			LD-10PAU-CAB1M				1	
			LX-030PLT	1			√	
					-	_	<u> </u>	

UL/cUL standards are not complied with.

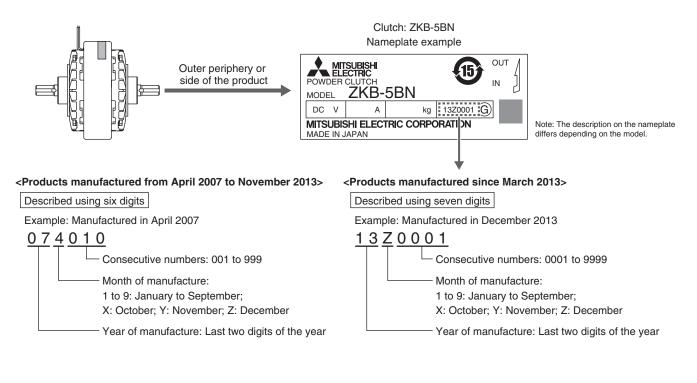
Туре

*1: Scheduled completion of production at the end of March 2024 (Built-to-order production from October 2021)

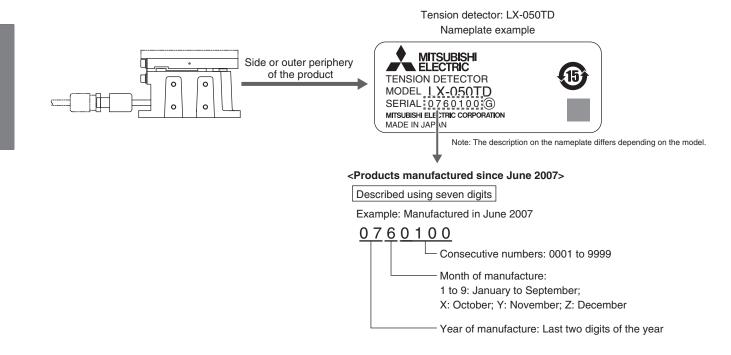
LX-100PLT

 $\sqrt{}$

*2: Scheduled completion of production at the end of September 2025 (Built-to-order production from April 2024)

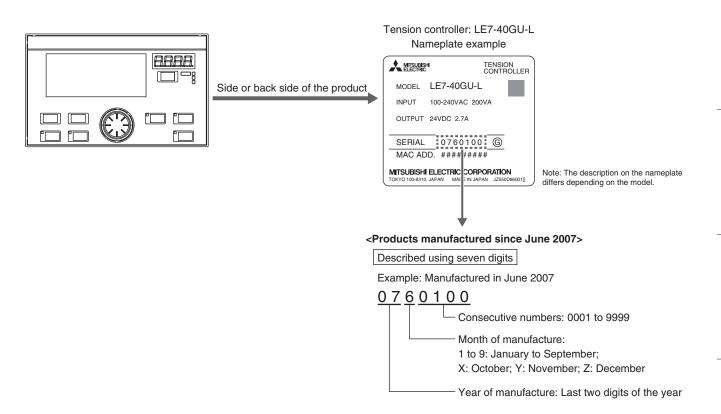

*3: Status of support as of October 1, 2023

How to Confirm the Date of Manufacture


To confirm the date of manufacture, use the serial number of the product.

The serial number can be confirmed via the nameplate or the number described on the package when you purchased the product.

For electromagnetic clutches and brakes



For tension detectors

ension Controller

■ For tension controllers, clutch amplifiers, tension meters, and tension amplifiers

Note: For a date of manufacture that is not described as above, consult your local Mitsubishi Electric representative.

rake					 		 		 				
itch/B							 						
er Clu													
Powder Clutch/Brake													
er.									 				
Tension Controller													
sion C													
Tens					 		 		 				
J.													
mplifie													
Clutch Amplifier							 						
CIL							 		 				
ler													
Tension Meter/Tension Amplifier				 	 	 	 		 		 		
nsion					 	 	 		 		 		
eter/Te							 						
sion M													
Ten													
01				 	 		 		 				
Detect					 				 				
Tension Detector													
Ter													
E					 		 						
Common Item													
Comm													
0	 			 	 		 		 				

Safety precautions

(Please read before considering installation.)

Safety Guidelines

- Before using our products, please read this catalog and instruction manual carefully, pay sufficient attention to safety, and use the products properly.
 These products are manufactured as general-purpose products for general industry. They are not designed or manufactured for use with equipment or systems that may affect human life.
- If you are considering using these products for nuclear power, power generation, aerospace, medical, or passenger vehicle equipment or systems, consult our sales department.
- •Although the products shown in this catalog are manufactured under strict quality control, please make sure to incorporate a systematic backup and fail safe function when installing the products in a facility where failure of a product may cause a serious accident or loss.

The safety precautions are classified into [🛆 WARNING] and [🛆 CAUTION] in this catalog. The meaning and symbols for each classification are as follows.

\land WARNING

MARNING If not operated properly, it may lead to a dangerous situation and cause death or serious injury.

Alternatively, it may cause damage to property.

Precautions for clutches/brakes in general

Image: Construction of the second second

A WARNING Check the surrounding environment.

Do not operate the products in an environment exposed to dust, high temperature, condensation, wind, and rain. Additionally, do not mount the products in a location where vibration or shock is directly applied. Otherwise, it may lead to damage, malfunction, and insufficient performance of the products.

Precautions for tension controllers in general

electric shock

Make sure to construct an emergency stop circuit externally isolated from the tension controllers.

Make sure to construct an emergency stop circuit for the machine externally isolated from the products. Otherwise, the machine may go out of control and cause an accident when a malfunction occurs.

WARNING Provide class D grounding (100 Ω or less).
Make sure to provide the grounding terminal and sheet metal body of the products with class D grounding (100 Ω or less) using electrical wires with a thickness of 2 mm² or more. Failure to do so may cause

* Provide class A grounding (10 Ω or less) for the safety barrier.

WARNING Do not operate the switches and keys with wet hands. Do not operate the switches and keys with wet hands.

Doing so may cause a fire and/or explosion.

Doing so may cause an electric shock.

where an ignition and/or explosion may occur.

Make sure not to operate the products in an atmosphere

 Slipping may cause sparks at the working surfaces in the products. Do not operate the products in an atmosphere containing oils, fats, or flammable gas which may cause an ignition and/or explosion. In addition, make sure to enclose the main unit of the products at a location where there are flammable materials such as cotton. Note that enclosing the main unit lowers the allowable heat dissipation of the product.

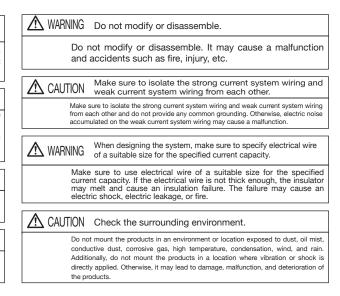
 Image: The product of the product of the product.
 Image: The product of the product of the product.

 Image: The product of the product of the product.
 Image: The product of the product.

 Image: The product of the product of the product.
 Image: The product of the product.

 Image: The product of the product of the product.
 If the products are exposed to water, oils, and fats.

 If the products are exposed to water, oils, and fats, such contaminants will eventually reach the working surfaces and significantly lower the torque. This may cause the machine to run by inertia or go out of control, which may lead to an accidental injury.


 Image: The product of the pr

Make sure not to operate the products in an atmosphere

where an ignition and/or explosion may occur.

Make sure to use bolts having the specified strength and to install devices to securely prevent looseness.

The bolts, depending on the strength, may be sheared and damaged, which may lead to injury. Use bolts that satisfy the requirements stipulated in Strength Classification II 7T of JIS B 1051 or better and prevent looseness by using an adhesive, spring washers, etc.

Notes

A WARNING

•We shall not be held responsible for any damages and losses caused by repair, disassembly, or modification performed by a third party other than Mitsubishi Electric Corporation or those appointed by Mitsubishi Electric Corporation.

The safety precautions and specifications shown in this catalog are subject to change without prior notice.

Trademarks and Registered Trademarks

Microsoft, Microsoft Access, ActiveX, Excel, SQL Server, Visual Basic, Visual C++, Visual C#, Visual Studio, Windows, Windows NT, Windows Server, Windows Vista, and Windows XP are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

• The company names, system names and product names mentioned in this document are either registered trademarks or trademarks of their respective companies.

- In some cases, trademark symbols such as ${}^{{}^{\mathsf{TM}}\mathsf{'}}$ or ${}^{"\!\!\mathfrak{B}"}$ are not specified in this document.

Automating the World

Creating Solutions Together.

Low-voltage Power Distribution Products

Compact and Modular Controllers

Numerical Control (NC)

Servos, Motors and Inverters

Collaborative and Industrial Robots

Power Monitoring and Energy Saving

Visualization: HMIs

Products

Processing machines: EDM, Lasers

Power (UPS) and Environmental Products

Edge Computing Products

SCADA, analytics and simulation software

Mitsubishi Electric's product lineup, from various controllers and drives to energy-saving devices and processing machines, all help you to automate your world. They are underpinned by software, innovative data monitoring, and modelling systems supported by advanced industrial networking and Edgecross IT/OT connectivity. Together with a worldwide partner ecosystem, Mitsubishi Electric factory automation (FA) has everything to make IoT and Digital Manufacturing a reality.

With a complete portfolio and comprehensive capabilities that combine synergies with diverse business units, Mitsubishi Electric provides a one-stop approach to how companies can tackle the shift to clean energy and energy conservation, carbon neutrality and sustainability, which are now a universal requirement of factories, buildings, and social infrastructure.

We at Mitsubishi Electric FA are your solution partners waiting to work with you as you take a step toward the realization of sustainable manufacturing and society through the application of automation. Let's automate the world together!

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN www.MitsubishiElectric.com