Programmable Controller

Transition from MELSEC-AnS/QnAS (Small Type) Series to MELSEC iQ-R Series Handbook

SAFETY PRECAUTIONS

(Read these precautions before using this product.)
Before using MELSEC iQ-R series programmable controllers, please read the manuals for the product and the relevant manuals introduced in those manuals carefully, and pay full attention to safety to handle the product correctly.
In this manual, the safety precautions are classified into two levels: " $\widehat{\$}$ WARNING" and " $\widehat{\text { CAUTION". }}$

\triangle WARNING
 Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

\triangle CAUTION

Indicates that incorrect handling may cause hazardous conditions, resulting in minor or moderate injury or property damage.

Under some circumstances, failure to observe the precautions given under " $\$$ CAUTION" may lead to serious consequences.

Observe the precautions of both levels because they are important for personal and system safety.
Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

[Design Precautions]

WARNING

- Configure safety circuits external to the programmable controller to ensure that the entire system operates safely even when a fault occurs in the external power supply or the programmable controller. Failure to do so may result in an accident due to an incorrect output or malfunction.
(1) Emergency stop circuits, protection circuits, and protective interlock circuits for conflicting operations (such as forward/reverse rotations or upper/lower limit positioning) must be configured external to the programmable controller.
(2) When the programmable controller detects an abnormal condition, it stops the operation and all outputs are:
- Turned off if the overcurrent or overvoltage protection of the power supply module is activated.
- Held or turned off according to the parameter setting if the self-diagnostic function of the CPU module detects an error such as a watchdog timer error.
(3) All outputs may be turned on if an error occurs in a part, such as an I/O control part, where the CPU module cannot detect any error. To ensure safety operation in such a case, provide a safety mechanism or a fail-safe circuit external to the programmable controller.
(4) Outputs may remain on or off due to a failure of a component such as a relay and transistor in an output circuit. Configure an external circuit for monitoring output signals that could cause a serious accident.
- In an output circuit, when a load current exceeding the rated current or an overcurrent caused by a load short-circuit flows for a long time, it may cause smoke and fire. To prevent this, configure an external safety circuit, such as a fuse.
- Configure a circuit so that the programmable controller is turned on first and then the external power supply. If the external power supply is turned on first, an accident may occur due to an incorrect output or malfunction.
- For the operating status of each station after a communication failure, refer to manuals relevant to the network. Incorrect output or malfunction due to a communication failure may result in an accident.
- When connecting an external device with a CPU module or intelligent function module to modify data of a running programmable controller, configure an interlock circuit in the program to ensure that the entire system will always operate safely. For other forms of control (such as program modification, parameter change, forced output, or operating status change) of a running programmable controller, read the relevant manuals carefully and ensure that the operation is safe before proceeding. Improper operation may damage machines or cause accidents.

[Design Precautions]

WARNING

- Especially, when a remote programmable controller is controlled by an external device, immediate action cannot be taken if a problem occurs in the programmable controller due to a communication failure. To prevent this, configure an interlock circuit in the program, and determine corrective actions to be taken between the external device and CPU module in case of a communication failure.
- Do not write any data to the "system area" and "write-protect area" of the buffer memory in the module. Also, do not use any "use prohibited" signals as an output signal from the CPU module to each module. Doing so may cause malfunction of the programmable controller system. For the "system area", "write-protect area", and the "use prohibited" signals, refer to the user's manual for the module used.
- If a communication cable is disconnected, the network may be unstable, resulting in a communication failure of multiple stations. Configure an interlock circuit in the program to ensure that the entire system will always operate safely even if communications fail. Incorrect output or malfunction due to a communication failure may result in an accident.
- To maintain the safety of the programmable controller system against unauthorized access from external devices via the network, take appropriate measures. To maintain the safety against unauthorized access via the Internet, take measures such as installing a firewall.

[Precautions for using digital-analog converter modules]

- Analog outputs may remain on due to a failure of the module. Configure an external interlock circuit for output signals that could cause a serious accident.
[Precautions for using high-speed counter modules]
- Outputs may remain on or off due to a failure of a transistor for external output. Configure an external circuit for monitoring output signals that could cause a serious accident.
[Precautions for using positioning modules]
- Configure safety circuits external to the programmable controller to ensure that the entire system operates safely even when a fault occurs in the external power supply or the programmable controller. Failure to do so may result in an accident due to an incorrect output or malfunction.
(1) Machine OPR (Original Point Return) is controlled by two kinds of data: an OPR direction and an OPR speed. Deceleration starts when the near-point dog signal turns on. If an incorrect OPR direction is set, motion control may continue without deceleration. To prevent machine damage caused by this, configure an interlock circuit external to the programmable controller.
(2) When the positioning module detects an error, the motion slows down and stops or the motion suddenly stops, depending on the stop group setting in parameter. Set the parameters to meet the specifications of the positioning control system used. In addition, set the OPR parameters and positioning data within the specified setting range.
(3) Outputs may remain on or off, or become undefined due to a failure of a component such as an insulation element and transistor in an output circuit, where the positioning module cannot detect any error. In a system where the incorrect outputs could cause a serious accident, configure an external circuit for monitoring output signals.
- An absolute position restoration by the positioning module may turn off the servo-on signal (servo off) for approximately $60 \mathrm{~ms}+$ scan time, and the motor may run unexpectedly. If this causes a problem, provide an electromagnetic brake to lock the motor during absolute position restoration.

[Design Precautions]

WARNING

[Precautions for using CC-Link system master/local modules]

- To set a refresh device in the module parameters, select the device Y for the remote output (RY) refresh device. If a device other than Y, such as M and L, is selected, the CPU module holds the device status even after its status is changed to STOP. For how to stop data link, refer to the MELSEC iQ-R CC-Link System Master/Local Module User's Manual (Application).
[Precautions for using products in a Class I, Division 2 environment]
- Products with the CI.I, DIV. 2 mark on the rating plate are suitable for use in Class I, Division 2, Groups A, B, C and D hazardous locations, or nonhazardous locations only.
This mark indicates that the product is certified for use in the Class I, Division 2 environment where flammable gases, vapors, or liquids exist under abnormal conditions. When using the products in the Class I, Division 2 environment, observe the following to reduce the risk of explosion.
- This device is open-type and is to be installed in an enclosure suitable for the environment and require a tool or key to open.
- Warning - Explosion Hazard - Substitution of any component may impair suitability for Class I, Division 2.
- Warning - Explosion Hazard - Do not disconnect equipment while the circuit is live or unless the area is known to be free of ignitable concentrations.
- Do not open the cover of the CPU module and remove the battery unless the area is known to be nonhazardous.
- All MELSEC iQ-R modules (except base modules) are to be connected to a base module only.

[Design Precautions]

CAUTION

- Do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 100 mm or more between them. Failure to do so may result in malfunction due to noise.
- During control of an inductive load such as a lamp, heater, or solenoid valve, a large current (approximately ten times greater than normal) may flow when the output is turned from off to on. Therefore, use a module that has a sufficient current rating.
- After the CPU module is powered on or is reset, the time taken to enter the RUN status varies depending on the system configuration, parameter settings, and/or program size. Design circuits so that the entire system will always operate safely, regardless of the time.
- Do not power off the programmable controller or reset the CPU module while the settings are being written. Doing so will make the data in the flash ROM and SD memory card undefined. The values need to be set in the buffer memory and written to the flash ROM and SD memory card again. Doing so also may cause malfunction or failure of the module.
- When changing the operating status of the CPU module from external devices (such as the remote RUN/STOP functions), select "Do Not Open by Program" for "Opening Method" of "Module Parameter". If "Open by Program" is selected, an execution of the remote STOP function causes the communication line to close. Consequently, the CPU module cannot reopen the line, and external devices cannot execute the remote RUN function.

[Design Precautions]

CAUTION

[Precautions for using digital-analog converter modules]

- Power on or off the external power supply while the programmable controller is on. Failure to do so may result in incorrect output or malfunction.
- At on/off of the power or external power supply, or at the output range switching, a voltage may occur or a current may flow between output terminals for a moment. In this case, start the control after analog outputs become stable.
[Precautions for using high-speed counter modules]
- Do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 150 mm or more between them. Failure to do so may result in malfunction due to noise.

[Installation Precautions]

WARNING

- Shut off the external power supply (all phases) used in the system before mounting or removing the module. Failure to do so may result in electric shock or cause the module to fail or malfunction.

[Installation Precautions]

© CAUTION

- Use the programmable controller in an environment that meets the general specifications. Failure to do so may result in electric shock, fire, malfunction, or damage to or deterioration of the product.
- To mount a module, place the concave part(s) located at the bottom onto the guide(s) of the base unit, and push in the module until the hook(s) located at the top snaps into place. Incorrect interconnection may cause malfunction, failure, or drop of the module.
- To mount a module with no module fixing hook, place the concave part(s) located at the bottom onto the guide(s) of the base unit, push in the module, and fix it with screw(s). Incorrect interconnection may cause malfunction, failure, or drop of the module.
- When using the programmable controller in an environment of frequent vibrations, fix the module with a screw.
- Tighten the screws within the specified torque range. Undertightening can cause drop of the screw, short circuit, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.
- When using an extension cable, connect it to the extension cable connector of the base unit securely. Check the connection for looseness. Poor contact may cause malfunction.
- When using an SD memory card, fully insert it into the SD memory card slot. Check that it is inserted completely. Poor contact may cause malfunction.
- Securely insert an extended SRAM cassette or a battery-less option cassette into the cassette connector of the CPU module. After insertion, close the cassette cover and check that the cassette is inserted completely. Poor contact may cause malfunction.
- Do not directly touch any conductive parts and electronic components of the module, SD memory card, extended SRAM cassette, battery-less option cassette, or connector. Doing so can cause malfunction or failure of the module.

[Wiring Precautions]

WARNING

- Shut off the external power supply (all phases) used in the system before installation and wiring. Failure to do so may result in electric shock or cause the module to fail or malfunction.
- After installation and wiring, attach a blank cover module (RG60) to each empty slot and an included extension connector protective cover to the unused extension cable connector before powering on the system for operation. Failure to do so may result in electric shock.

[Wiring Precautions]

CAUTION

- Individually ground the FG and LG terminals of the programmable controller with a ground resistance of 100 ohms or less. Failure to do so may result in electric shock or malfunction.
- Use applicable solderless terminals and tighten them within the specified torque range. If any spade solderless terminal is used, it may be disconnected when the terminal screw comes loose, resulting in failure.
- Check the rated voltage and signal layout before wiring to the module, and connect the cables correctly. Connecting a power supply with a different voltage rating or incorrect wiring may cause fire or failure.
- Connectors for external devices must be crimped or pressed with the tool specified by the manufacturer, or must be correctly soldered. Incomplete connections may cause short circuit, fire, or malfunction.
- Securely connect the connector to the module. Poor contact may cause malfunction.
- Do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 100 mm or more between them. Failure to do so may result in malfunction due to noise.
- Place the cables in a duct or clamp them. If not, dangling cables may swing or inadvertently be pulled, resulting in malfunction or damage to modules or cables.
In addition, the weight of the cables may put stress on modules in an environment of strong vibrations and shocks.
Do not clamp the extension cables with the jacket stripped. Doing so may change the characteristics of the cables, resulting in malfunction.
- Check the interface type and correctly connect the cable. Incorrect wiring (connecting the cable to an incorrect interface) may cause failure of the module and external device.
- Tighten the terminal screws or connector screws within the specified torque range. Undertightening can cause drop of the screw, short circuit, fire, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, fire, or malfunction.
- When disconnecting the cable from the module, do not pull the cable by the cable part. For the cable with connector, hold the connector part of the cable. For the cable connected to the terminal block, loosen the terminal screw. Pulling the cable connected to the module may result in malfunction or damage to the module or cable.
- Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- A protective film is attached to the top of the module to prevent foreign matter, such as wire chips, from entering the module during wiring. Do not remove the film during wiring. Remove it for heat dissipation before system operation.

[Wiring Precautions]

CAUTION

- Programmable controllers must be installed in control panels. Connect the main power supply to the power supply module in the control panel through a relay terminal block. Wiring and replacement of a power supply module must be performed by qualified maintenance personnel with knowledge of protection against electric shock.
- For Ethernet cables to be used in the system, select the ones that meet the specifications in the user's manual for the module used. If not, normal data transmission is not guaranteed.
[Precautions for using channel isolated analog-digital converter modules, channel isolated RTD input modules, and temperature control modules]
- Individually ground the shielded cables of the programmable controller with a ground resistance of 100 ohms or less. Failure to do so may result in electric shock or malfunction.
[Precautions for using channel isolated thermocouple input modules]
- Individually ground the shielded cables of the programmable controller with a ground resistance of 100 ohms or less. Failure to do so may result in electric shock or malfunction.
- Do not place the module near a device that generates magnetic noise.
[Precautions for using high-speed counter modules]
- Do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 150 mm or more between them. Failure to do so may result in malfunction due to noise.
- Ground the shielded cables on the encoder side (relay box) with a ground resistance of 100 ohm or less. Failure to do so may cause malfunction.

[Precautions for using CC-Link system master/local modules]

- Use Ver.1.10-compatible CC-Link dedicated cables in a CC-Link system. If not, the performance of the CC-Link system is not guaranteed. For the station-to-station cable length and the maximum overall cable length, follow the specifications in the MELSEC iQ-R CC-Link System Master/Local Module User's Manual (Startup). If not, normal data transmission is not guaranteed.

[Startup and Maintenance Precautions]

WARNING

- Do not touch any terminal while power is on. Doing so will cause electric shock or malfunction.
- Correctly connect the battery connector. Do not charge, disassemble, heat, short-circuit, solder, or throw the battery into the fire. Also, do not expose it to liquid or strong shock. Doing so will cause the battery to produce heat, explode, ignite, or leak, resulting in injury and fire.
- Shut off the external power supply (all phases) used in the system before cleaning the module or retightening the terminal screws, connector screws, or module fixing screws. Failure to do so may result in electric shock.

[Startup and Maintenance Precautions]

CAUTION

- When connecting an external device with a CPU module or intelligent function module to modify data of a running programmable controller, configure an interlock circuit in the program to ensure that the entire system will always operate safely. For other forms of control (such as program modification, parameter change, forced output, or operating status change) of a running programmable controller, read the relevant manuals carefully and ensure that the operation is safe before proceeding. Improper operation may damage machines or cause accidents.
- Especially, when a remote programmable controller is controlled by an external device, immediate action cannot be taken if a problem occurs in the programmable controller due to a communication failure. To prevent this, configure an interlock circuit in the program, and determine corrective actions to be taken between the external device and CPU module in case of a communication failure.
- Do not disassemble or modify the modules. Doing so may cause failure, malfunction, injury, or a fire.
- Use any radio communication device such as a cellular phone or PHS (Personal Handy-phone System) more than 25 cm away in all directions from the programmable controller. Failure to do so may cause malfunction.
- Shut off the external power supply (all phases) used in the system before mounting or removing the module. Failure to do so may cause the module to fail or malfunction.
- Tighten the screws within the specified torque range. Undertightening can cause drop of the component or wire, short circuit, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.
- After the first use of the product, do not perform each of the following operations more than 50 times (IEC 61131-2/JIS B 3502 compliant).
Exceeding the limit may cause malfunction.
- Mounting/removing the module to/from the base unit
- Inserting/removing the extended SRAM cassette or battery-less option cassette to/from the CPU module
- Mounting/removing the terminal block to/from the module
- After the first use of the product, do not insert/remove the SD memory card to/from the CPU module more than 500 times. Exceeding the limit may cause malfunction.
- Do not touch the metal terminals on the back side of the SD memory card. Doing so may cause malfunction or failure of the module.
- Do not touch the integrated circuits on the circuit board of an extended SRAM cassette or a batteryless option cassette. Doing so may cause malfunction or failure of the module.
- Do not drop or apply shock to the battery to be installed in the module. Doing so may damage the battery, causing the battery fluid to leak inside the battery. If the battery is dropped or any shock is applied to it, dispose of it without using.
- Startup and maintenance of a control panel must be performed by qualified maintenance personnel with knowledge of protection against electric shock. Lock the control panel so that only qualified maintenance personnel can operate it.
- Before handling the module, touch a conducting object such as a grounded metal to discharge the static electricity from the human body. Failure to do so may cause the module to fail or malfunction.

[Operating Precautions]

CAUTION

- When changing data and operating status, and modifying program of the running programmable controller from an external device such as a personal computer connected to an intelligent function module, read relevant manuals carefully and ensure the safety before operation. Incorrect change or modification may cause system malfunction, damage to the machines, or accidents.
- Do not power off the programmable controller or reset the CPU module while the setting values in the buffer memory are being written to the flash ROM in the module. Doing so will make the data in the flash ROM and SD memory card undefined. The values need to be set in the buffer memory and written to the flash ROM and SD memory card again. Doing so can cause malfunction or failure of the module.
[Precautions for using positioning modules]
- Note that when the reference axis speed is specified for interpolation operation, the speed of the partner axis (2nd, 3rd, or 4th axis) may exceed the speed limit value.
- Do not go near the machine during test operations or during operations such as teaching. Doing so may lead to injuries.

[Disposal Precautions]

CAUTION

- When disposing of this product, treat it as industrial waste.
- When disposing of batteries, separate them from other wastes according to the local regulations.

[Transportation Precautions]

CAUTION

- When transporting lithium batteries, follow the transportation regulations.
- The halogens (such as fluorine, chlorine, bromine, and iodine), which are contained in a fumigant used for disinfection and pest control of wood packaging materials, may cause failure of the product. Prevent the entry of fumigant residues into the product or consider other methods (such as heat treatment) instead of fumigation. The disinfection and pest control measures must be applied to unprocessed raw wood.

CONDITIONS OF USE FOR THE PRODUCT

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;
i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident; and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.
(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.

MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL
BULLETINS AND GUIDELINES FOR the PRODUCT.
("Prohibited Application")
Prohibited Applications include, but not limited to, the use of the PRODUCT in;

- Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
- Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
- Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.
Notwithstanding the above restrictions, Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi representative in your region.

INTRODUCTION

Thank you for purchasing the Mitsubishi Electric MELSEC iQ-R series programmable controllers.
This document describes the system configuration, specifications, installation, wiring, maintenance, and inspection of MELSEC iQ-R series programmable controllers.
Before using this product, please read this document and the relevant manuals carefully and develop familiarity with the functions and performance of the MELSEC iQ-R series programmable controller to handle the product correctly.
When applying the program and circuit examples provided in this document to an actual system, ensure the applicability and confirm that it will not cause system control problems.
Please make sure that the end users read this document.
Specifications are subject to change without notice.

CONTENTS

SAFETY PRECAUTIONS 1
CONDITIONS OF USE FOR THE PRODUCT 10
INTRODUCTION 10
GENERIC TERMS USED IN THIS DOCUMENT 14
CHAPTER 1 OVERVIEW 15
1.1 Considerations Before Selecting Alternative Models for Replacement 15
1.2 Overview of the MELSEC iQ-R Series 16
1.3 How to Replace the System from the MELSEC-AnS/QnAS Series to the MELSEC iQ-R Series 18
CHAPTER 2 CPU MODULE REPLACEMENT 19
2.1 Alternative Model List 19
2.2 Specification Comparison Table 21
2.3 Function Comparison Table 25
2.4 Precautions for Replacement 27
CHAPTER 3 I/O MODULE REPLACEMENT 29
3.1 Alternative Model List 29
3.2 Specification Comparison Tables 36
Input modules 36
Output modules 78
I/O combined modules. 106
Interrupt modules. 122
Blank cover modules 124
3.3 Precautions for Replacement 125
Wiring 125
Input modules 125
Output modules 126
Interrupt modules. 126
CHAPTER 4 POWER SUPPLY MODULE REPLACEMENT 127
4.1 Alternative Model List 127
4.2 Specification Comparison Tables 128
4.3 Precautions for Replacement 135
CHAPTER 5 BASE UNIT AND EXTENSION CABLE REPLACEMENT 136
5.1 Alternative Model Lists 136
Base units 136
Extension cables 136
5.2 Specification Comparison Tables 137
Base units 137
Extension cables 142
5.3 Precautions for Replacement 143
Base units 143
Extension cables 144
CHAPTER 6 MEMORY AND BATTERY REPLACEMENT 145
6.1 Alternative Model List 145
6.2 Precautions for Replacement 146
CHAPTER 7 ANALOG I/O MODULE REPLACEMENT 147
7.1 Alternative Model List 147
7.2 Specification Comparison Tables 150
Analog input modules 150
Analog output modules 156
Temperature input modules 162
Heating-cooling temperature control/Temperature control modules 165
7.3 Function Comparison Tables 206
Analog input modules 206
Analog output modules 206
Temperature input modules 207
Heating-cooling temperature control/Temperature control modules 208
7.4 Precautions for Replacement. 210
CHAPTER 8 POSITIONING MODULE AND PULSE I/O MODULE REPLACEMENT 212
8.1 Alternative Model List 212
8.2 Specification Comparison Tables 214
Positioning modules 214
High-speed counter modules 217
8.3 Function Comparison Tables 232
Positioning modules and pulse I/O modules 232
High-speed counter modules 235
8.4 Precautions for Replacement. 236
CHAPTER 9 CONTROL NETWORK MODULE REPLACEMENT 237
9.1 Alternative Model List 237
9.2 Specification Comparison Tables 238
CC-Link system master/local modules 238
MELSECNET/10 network modules 239
9.3 Function Comparison Tables 240
CC-Link system master/local modules 240
MELSECNET/10 network modules 242
9.4 Precautions for Replacement. 246
CC-Link system master/local modules 246
MELSECNET/10 network modules 247
CHAPTER 10 INFORMATION MODULE REPLACEMENT 248
10.1 Alternative Model List 248
10.2 Specification Comparison Tables 249
Serial communication modules 249
Ethernet interface modules 255
10.3 Function Comparison Tables 258
Computer link/serial communication modules. 258
Ethernet interface modules 261
10.4 Precautions for Replacement. 263
Serial communication modules 263
Ethernet interface modules 263
CHAPTER 11 PROJECT REPLACEMENT 266
11.1 Replacement Using MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool 266
Instant check of where to correct. 267
11.2 Replacement Using GX Developer/GX Works2/GX Works3 276
11.3 Instruction Replacement. 280
11.4 Parameter Replacement 280
11.5 Special Relay and Special Register Replacement 280
11.6 Precautions for Replacement. 281
REVISIONS 284
WARRANTY 285
TRADEMARKS 286

generic TERMS USED IN THIS DOCUMENT

Generic term	Description
AnSCPU	A generic term for the MELSEC-AnS series CPU modules
AnUS(H)CPU	A generic term for the A2USCPU and A2USHCPU-S1
QnASCPU	A generic term for the MELSEC-QnAS series CPU modules
RCPU	A generic term for the MELSEC iQ-R series CPU modules
RnCPU	A generic term for the R00CPU, R01CPU, R02CPU, R04CPU, R08CPU, R16CPU, R32CPU, and R120CPU

1.1 Considerations Before Selecting Alternative Models for Replacement

Some items need to be considered before replacing modules from the MELSEC-AnS/QnAS series to the MELSEC iQ-R series.
The following are main items to be considered. Consider them sufficiently in advance.
(It is necessary to understand the existing system configuration before taking the items into consideration.)

Replacement methods and installation location

Whether some space can be reserved when adding a base unit at the replacement work.

Model selection (I/O module)

Whether a module whose specifications (rated input current and others) and functions are equivalent to that of the existing module exists or not in the MELSEC iQ-R series.
Whether using the existing external wiring or wiring newly.

Model selection (intelligent function module)

Whether the specifications of the replaced module and connection external device match or not.
Whether using the existing external wiring or wiring newly.

Model selection (control network module)

Whether MELSECNET can be replaced with CC-Link IE Control or CC-Link IE Field.
Whether a new communication cable installation has been considered or not at the replacement of the network.

Model selection (communication module)

Whether the communication target device is compatible with the MELSEC $i Q-R$ series module commands in the communications using the MC protocol or not.
Whether the software (program) of the communication target device can be converted into the one supported by the MELSEC iQ-R series.

Use of existing programs

Whether using the programs in the existing system or creating a new program.
Whether the workload and cost of correction have been considered or not when using the existing programs of intelligent function modules and communication modules.

1.2 Overview of the MELSEC $\operatorname{iQ}-\mathrm{R}$ Series

MELSEC iQ-R series modules equipped with the newly developed high-speed system bus significantly reduces the takt time. And with its high-accuracy motion control achieved by the multiple CPU high-speed transmission, the MELSEC iQ-R series is at the core of automation systems, helping to provide solutions to customers.

Revolutionary, next-generation controllers building a new era in automation

To succeed in highly competitive markets, it's important to build automation systems that ensure high productivity and consistent product quality.

The MELSEC iQ-R Series has been developed from the ground up based on common problems faced by customers and rationalizing them into seven key areas: Productivity, Engineering, Maintenance, Quality, Connectivity, Security and Compatibility. Mitsubishi Electric is taking a three-point approach to solving these problems: Reducing TCO*1, increasing Reliability and Reusability of existing assets.
*1 Total Cost of Ownership

Process: High availability process control in a scalable automation solution

- Extensive visualization and data acquisition
- High availability across multiple levels
- Integrated process control software simplifies engineering

Safety: System design flexibility with integrated safety control

- Integrated generic and safety control
- Consolidated network topology
- Complies with international safety standards

Intelligence: Extensive data handling from shop floor to business process systems

- Direct data collection and analysis
- C/C++ based programming
- Collect factory data in real-time
- Expand features using third party partner applications

Productivity: Improve productivity through advanced performance/functionality

- New high-speed system bus realizing shorter production cycle
- Super-high-accuracy motion control utilizing advanced multiple CPU features
- Inter-modular synchronization resulting in increased processing accuracy

Engineering: Reducing development costs through intuitive engineering

- Intuitive engineering environment covering the product development cycle
- Simple point-and-click programming architecture
- Understanding globalization by multiple language support

Maintenance: Reduce maintenance costs/downtime with easier maintenance features

[^0]
Quality: Reliable and trusted MELSEC product quality

- Robust design ideal for harsh industrial environments
- Improve and maintain actual manufacturing quality
- Conforms to main international standards

Connectivity: Seamless network reduces system costs

- Seamless connectivity within all levels of manufacturing
- High-speed and large data bandwidth ideal for large-scale control systems
- Easy connection of third-party components utilizing device library

Security: Robust security that can be relied on

- Protect intellectual property
- Unauthorized access protection across distributed control network

Compatibility: Extensive compatibility with existing products

- Utilize existing assets while taking advantage of cutting-edge technology
- Compatible with most existing MELSEC-Q series modules

1.3 How to Replace the System from the MELSECAnS/QnAS Series to the MELSEC iQ-R Series

This section describes how to replace the system from the MELSEC-AnS/QnAS series to the MELSEC iQ-R series.

Model selection

Select a model to be replaced. For details, refer to the following.
F Page 19 CPU MODULE REPLACEMENT to Page 237 CONTROL NETWORK MODULE REPLACEMENT

Project conversion

Convert the project used in the MELSEC-AnS/QnAS series so that it can be used in the MELSEC iQ-R series. For details, refer to the following.
\longmapsto Page 266 PROJECT REPLACEMENT

2.1 Alternative Model List

This section lists alternative models of the MELSEC iQ-R series CPU modules in accordance with the program capacity, number of I/O points, and functions of the MELSEC-AnS/QnAS series CPU modules.
Select models that best suit your application considering the scope of control of the MELSEC-AnS/QnAS series CPU module currently used, as well as the system specifications and extensibility after replacement.

Item	MELSEC-AnS/QnAS series	MELSEC iQ-R series	Specification difference
AnSCPU	A1SJHCPU A1SJCPU A1SJCPU-S3	R00CPU	(1) I/O control: Refresh/direct switching \rightarrow Refresh only (2) Processing speed (LD instruction): For refresh, $0.33 \mu \mathrm{~s}$ (A1SJHCPU), $1.0 \mu \mathrm{~s}$ (A1SJCPU/ A1SJCPU-S3) $\rightarrow 31.36 \mathrm{~ns}$ (3) PC MIX value: $0.4 \rightarrow 19$ (4) Number of I/O points: $256 \rightarrow 4096$ (5) Number of I/O device points: $2048 \rightarrow 8192$ (6) Program capacity: 8 K steps $\rightarrow 10 \mathrm{~K}$ steps (7) Number of file register points: 8 K (A1SJHCPU), 4K (A1SJCPU/A1SJCPU-S3) $\rightarrow 96 \mathrm{~K}$ (8) Extension level: $1 \rightarrow 7$ (9) Memory: Built-in RAM/E²PROM cassette (sold separately) \rightarrow Program memory/built-in RAM/built-in ROM (10)Micro computer program: Available \rightarrow Not available (11)Others: Equipped with the 5 -slot base unit, power supply module \rightarrow None $^{* 2}$
	A1SHCPU A1SCPU A1SCPUC24-R2 *1	R00CPU	(1) I/O control: Refresh/direct switching \rightarrow Refresh only (2) Processing speed (LD instruction): For refresh, $0.33 \mu \mathrm{~s}$ (A1SHCPU), $1.0 \mu \mathrm{~s}$ (A1SCPU/ A1SCPUC24-R2) $\rightarrow 31.36 \mathrm{~ns}$ (3) PC MIX value: $0.4 \rightarrow 19$ (4) Number of I/O points: $256 \rightarrow 4096$ (5) Number of I/O device points: $2048 \rightarrow 8192$ (6) Program capacity: 8 K steps $\rightarrow 10 \mathrm{~K}$ steps (7) Number of file register points: 8K (A1SHCPU), 4K (A1SCPU/A1SCPUC24-R2) $\rightarrow 96 \mathrm{~K}$ (8) Extension level: $1 \rightarrow 7$ (9) Memory: Built-in RAM/E ${ }^{2}$ PROM cassette (sold separately) \rightarrow Program memory/built-in RAM/built-in ROM (10)Micro computer program: Available \rightarrow Not available
	A2SHCPU A2SCPU	R01CPU	(1) I/O control: Refresh/direct switching \rightarrow Refresh only (2) Processing speed (LD instruction): For refresh, $0.25 \mu \mathrm{~s}$ (A2SHCPU), $1.0 \mu \mathrm{~s}$ (A2SCPU) \rightarrow 31.36ns (3) PC MIX value: $0.5 \rightarrow 19$ (4) Number of I/O points: $512 \rightarrow 4096$ (5) Number of I/O device points: $2048 \rightarrow 8192$ (6) Program capacity: 14 K steps $\rightarrow 15 \mathrm{~K}$ steps (7) Number of file register points: 8 K (A2SHCPU), 4K (A2SCPU) $\rightarrow 96 \mathrm{~K}$ (8) Extension level: $1 \rightarrow 7$ (9) Memory: Built-in RAM/E²PROM cassette (sold separately) \rightarrow Program memory/built-in RAM/built-in ROM/SD memory card (10)Micro computer program: Available \rightarrow Not available
	A2USCPU	R02CPU	(1) I/O control: Refresh only (2) Processing speed (LD instruction): $0.2 \mu \mathrm{~s} \rightarrow 3.92 \mathrm{~ns}$ (3) PC MIX value: $0.9 \rightarrow 146$ (4) Number of I/O points: $512 \rightarrow 4096$ (5) Number of I/O device points: 8192 (6) Program capacity: 14 K steps $\rightarrow 20 \mathrm{~K}$ steps (7) Number of file register points: $8 \mathrm{~K} \rightarrow 96 \mathrm{~K}$ (8) Extension level: $1 \rightarrow 7$ (9) Memory: Built-in RAM/E ${ }^{2}$ PROM cassette (sold separately) \rightarrow Program memory/built-in RAM/built-in ROM/SD memory card

Item	MELSEC-AnS/QnAS series	MELSEC iQ-R series	Specification difference
AnSCPU	A2USHCPU-S1	R04CPU	(1) I/O control: Refresh only (2) Processing speed (LD instruction): $0.09 \mu \mathrm{~s} \rightarrow 0.98 \mathrm{~ns}$ (3) PC MIX value: $2.0 \rightarrow 419$ (4) Number of I/O points: $1024 \rightarrow 4096$ (5) Number of I/O device points: $8192 \rightarrow 12288$ (6) Program capacity: 30 K steps $\rightarrow 40 \mathrm{~K}$ steps (7) Number of file register points: $8 \mathrm{~K} \rightarrow 160 \mathrm{~K}$ (8) Extension level: $1 \rightarrow 7$ (9) Memory: Built-in RAM/E ${ }^{2}$ PROM cassette (sold separately) \rightarrow Program memory/built-in RAM/built-in ROM/SD memory card
QnASCPU	Q2ASCPU	R04CPU	(1) I/O control: Refresh only (2) Processing speed (LD instruction): $0.2 \mu \mathrm{~s} \rightarrow 0.98 \mathrm{~ns}$ (3) PC MIX value: $1.3 \rightarrow 419$ (4) Number of I/O points: $512 \rightarrow 4096$ (5) Number of I/O device points: $8192 \rightarrow 12288$ (6) Program capacity: 28 K steps $\rightarrow 40 \mathrm{~K}$ steps (7) Number of file register points: 0K (Memory card (sold separately) is necessary.) $\rightarrow 160 \mathrm{~K}$ (when an extended SRAM cassette is used: 8352 K maximum) (8) Extension level: $1 \rightarrow 7$ (9) Memory: Built-in RAM/memory card (sold separately) \rightarrow Program memory/built-in RAM/ built-in ROM/SD memory card
	Q2ASCPU-S1	R08CPU	(1) I/O control: Refresh only (2) Processing speed (LD instruction): $0.2 \mu \mathrm{~s} \rightarrow 0.98 \mathrm{~ns}$ (3) PC MIX value: $1.3 \rightarrow 419$ (4) Number of I/O points: $1024 \rightarrow 4096$ (5) Number of I/O device points: $8192 \rightarrow 12288$ (6) Program capacity: 60 K steps $\rightarrow 80 \mathrm{~K}$ steps (7) Number of file register points: 0 K (Memory card (sold separately) is necessary.) $\rightarrow 544 \mathrm{~K}$ (when an extended SRAM cassette is used: 8736 K maximum) (8) Extension level: $1 \rightarrow 7$ (9) Memory: Built-in RAM/memory card (sold separately) \rightarrow Program memory/built-in RAM/ built-in ROM/SD memory card
	Q2ASHCPU	R04CPU	(1) I/O control: Refresh only (2) Processing speed (LD instruction): $0.075 \mu \mathrm{~s} \rightarrow 0.98 \mathrm{~ns}$ (3) PC MIX value: $3.8 \rightarrow 419$ (4) Number of I/O points: $512 \rightarrow 4096$ (5) Number of I/O device points: $8192 \rightarrow 12288$ (6) Program capacity: 28 K steps $\rightarrow 40 \mathrm{~K}$ steps (7) Number of file register points: OK (Memory card (sold separately) is necessary.) $\rightarrow 160 \mathrm{~K}$ (when an extended SRAM cassette is used: 8352 K maximum) (8) Extension level: $1 \rightarrow 7$ (9) Memory: Built-in RAM/memory card (sold separately) \rightarrow Program memory/built-in RAM/ built-in ROM/SD memory card
	Q2ASHCPU-S1	R08CPU	(1) I/O control: Refresh only (2) Processing speed (LD instruction): $0.075 \mu \mathrm{~s} \rightarrow 0.98 \mathrm{~ns}$ (3) PC MIX value: $3.8 \rightarrow 419$ (4) Number of I/O points: $1024 \rightarrow 4096$ (5) Number of I/O device points: $8192 \rightarrow 12288$ (6) Program capacity: 60 K steps $\rightarrow 80 \mathrm{~K}$ steps (7) Number of file register points: OK (Memory card (sold separately) is necessary.) $\rightarrow 544 \mathrm{~K}$ (when an extended SRAM cassette is used: 8736 K maximum) (8) Extension level: $1 \rightarrow 7$ (9) Memory: Built-in RAM/memory card (sold separately) \rightarrow Program memory/built-in RAM/ built-in ROM/SD memory card

*1 The A1SCPUC24-R2 is the CPU module with the information module. Replace a single A1SCPUC24-R2 with a CPU module and an information module (RJ71C24 or RJ71C24-R2)
*2 The A1SJHCPU, A1SJCPU, and A1SJCPU-S3 are CPU modules that integrate the power supply module and the main base unit. For the power supply module, refer to the following
W Page 133 A1SJHCPU (power supply part) and R61P
For the main base unit, refer to the following.
F Page 138 A1S35B and R35B

2.2 Specification Comparison Table

O: Compatible, \triangle : Partly changed, \times : Incompatible, - : Not applicable

Item		MELSEC-AnS/QnAS series		MELSEC iQ-R series	Compatibility	Precautions
		AnSCPU	QnASCPU	RnCPU		
Control method		Stored program cyclic operation			\bigcirc	
I/O control mode		A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2)/ A2S(H)CPU: Selectable (refresh mode/direct mode) AnUS(H)CPU: Refresh mode only (Direct access I/O is available by specifying direct access I/O (DX, DY).)	Refresh mode (Direct access I/O is available by specifying direct access I/O (DX, DY).)		\triangle	
Programming language	Sequence control language	Relay symbol language, logic symbol language, MELSAP-II (SFC)	Relay symbol language, logic symbol language, MELSAP3 (SFC)	Ladder diagram (LD), sequential function chart (SFC), structured text (ST), function block diagram (FBD/LD)	\triangle	*1
Processing speed	Sequence instruction [LD]	A1SJ(H)CPU(-S3): $0.33 \mu \mathrm{~s}$ (during refresh) A1SCPU(C24-R2): $1.0 \mu \mathrm{~s}$ (during refresh) A2SHCPU: $0.25 \mu \mathrm{~s}$ (during refresh) A2SCPU: $1.0 \mu \mathrm{~s}$ (during refresh) A2USCPU: $0.2 \mu \mathrm{~s}$ A2USHCPU-S1: $0.09 \mu \mathrm{~s}$	$\begin{aligned} & \text { Q2ASCPU(-S1): } 0.2 \mu \mathrm{~s} \\ & \text { Q2ASHCPU(-S1): } 0.075 \mu \mathrm{~s} \end{aligned}$	R00/R01CPU: 31.36ns R02CPU: 3.92ns R04/R08CPU: 0.98ns	-	
PC MIX value		A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2): 0.4 A2S(H)CPU: 0.5 A2USCPU: 0.9 A2USHCPU-S1: 2.0	$\begin{aligned} & \text { Q2ASCPU(-S1): } 1.3 \\ & \text { Q2ASHCPU(-S1): } 3.8 \end{aligned}$	$\begin{aligned} & \text { R00/R01CPU: } 19 \\ & \text { R02CPU: } 146 \\ & \text { R04/R08: } 419 \end{aligned}$	\bigcirc	
Constant scan		10 to 190ms (Setting available in increments of 10 ms)	5 to 2000ms (Setting available in increments of 5ms)	R00/R01/R02CPU: 0.5 to 2000ms (Setting available in increments of 0.1 ms) R04/R08CPU: 0.2 to 2000ms (Setting available in increments of 0.1 ms)	\bigcirc	
Memory cap		A1SJCPU(-S3)/ A1SCPU(C24-R2): 32K bytes A1SJHCPU/A2S(H)CPU/ AnUS(H)CPU: 64K bytes	Differs depending on the memory card used (2036K bytes maximum)	- Program memory: R00CPU: 40K bytes R01CPU: 60K bytes R02CPU: 80K bytes R04CPU: 160K bytes R08CPU: 320K bytes ■Memory card: Differs depending on the SD memory card used (SD/SDHC memory card: 32G bytes maximum) (except for the R00CPU)	-	

Item		MELSEC-AnS/QnAS series		MELSEC iQ-R series	Compatibility	Precautions
		AnSCPU	QnASCPU	RnCPU		
Program capacity	Sequence program	A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2): 8K steps A2S(H)/A2USCPU: 14K steps A2USHCPU-S1: 30K steps	Q2AS(H)CPU: 28K steps Q2AS(H)CPU-S1: 60K steps	R00CPU: 10K steps R01CPU: 15K steps R02CPU: 20K steps R04CPU: 40K steps R08CPU: 80K steps	\bigcirc	
	Microcomputer program	A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2)/ A2S(H)CPU: 14K bytes maximum AnUS(H)CPU: -	-		\times	*2
Number of I/O points		A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2): 256 A2S(H)/A2USCPU: 512 A2USHCPU-S1: 1024	Q2AS(H)CPU: 512 Q2AS(H)CPU-S1: 1024	4096	\bigcirc	
Number of device points	Input [X]	A1SJCPU(-S3)/ A1SCPU(C24-R2): 256 A1SJH/A2S(H)CPU: 2048 AnUS(H)CPU: 8192	8192	R00/R01/R02CPU: 8192 R04/R08CPU: 12288	\bigcirc	
	Output [Y]	A1SJCPU(-S3)/ A1SCPU(C24-R2): 256 A1SJH/A2S(H)CPU: 2048 AnUS(H)CPU: 8192	8192	R00/R01/R02CPU: 8192 R04/R08CPU: 12288	\bigcirc	
	Internal relay [M]	A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2)/ A2S(H)CPU: 1000 (Total 2048, shared by M/L/S) AnUS(H)CPU: 7144 (Total 8192, shared by M/L/S)	8192	R00/R01/R02CPU: 8192 R04/R08CPU: 12288	\bigcirc	*3
	Latch relay [L]	A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2)/ A2S(H)CPU: 1048 (Total 2048, shared by M/L/S) AnUS(H)CPU: 1048 (Total 8192, shared by M/L/S)	8192		\bigcirc	*3
	Step relay [S]	A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2)/ A2S(H)CPU: 0 (Total 2048, shared by M/L/S) AnUS(H)CPU: 0 (Total 8192, shared by M/L/S)	8192	R00/R01/R02CPU: 8192 R04/R08CPU: 16384	\bigcirc	*3
	Annunciator [F]	A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2)/ A2S(H)CPU: 256 AnUS(H)CPU: 2048	2048		\bigcirc	*3
	Edge relay [V]	-	2048		\bigcirc	*3
	Link relay [B]	A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2)/ A2S(H)CPU: 1024 AnUS(H)CPU: 8192	8192		\bigcirc	*3
	Timer [T]	A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2)/ A2S(H)CPU: 256 AnUS(H)CPU: 2048	2048	R00/R01/R02CPU: 2048 R04/R08CPU: 1024 (Timer [T]) + 1024 (Long timer [LT])	\bigcirc	*3
	Counter [C]	A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2)/ A2S(H)CPU: 256 AnUS(H)CPU: 1024	1024	R00/R01/R02CPU: 1024 R04/R08CPU: 512 (Counter [C]) +512 (Long counter [LC])	\bigcirc	*3
	Data register [D]	A1SJ(H)CPU(-S3)/ A1SCPU(C24-R2)/ A2S(H)CPU: 1024 AnUS(H)CPU: 8192	12288	R00/R01/R02CPU: 12282 R04/R08CPU: 18432	\bigcirc	*3

Item		MELSEC－AnS／QnAS series		MELSEC iQ－R series	Compatibility	Precautions
		AnSCPU	QnASCPU	RnCPU		
Number of device points	Link register ［W］	A1SJ（H）CPU（－S3）／ A1SCPU（C24－R2）／ A2S（H）CPU： 1024 AnUS（H）CPU： 8192	8192		\bigcirc	＊3
	File register［R］	8192	32768 （1042432 maximum，by switching blocks）	The number of points specified in the［ZR］ section can be used by switching blocks in increments of 32768 points．	\bigcirc	＊3
	File register ［ZR］	－	1042432	R00／R01／R02CPU： 98304 R04／R08CPU：Calculated by a formula．${ }^{*} 4$ （The maximum number of points varies depending on the model．）	\bigcirc	＊3
	Accumulator ［A］	2	－		－	＊5
	Index register ［Z］	A1SJ（H）CPU（－S3）／ A1SCPU（C24－R2）／ A2S（H）CPU： 1 AnUS（H）CPU： 7	16	20	\bigcirc	＊3
	Index register ［V］	A1SJ（H）CPU（－S3）／ A1SCPU（C24－R2）／ A2S（H）CPU： 1 AnUS（H）CPU： 7	－		－	＊6
	Nesting［ N ］	8	15	15	\bigcirc	
	Pointer［P］	256	4096	8192	\bigcirc	＊3
	Interrupt pointer［I］	32	48	1024	\bigcirc	
	Special relay ［M／SM］	256	2048	4096	\triangle	＊7
	Special register ［D／SD］	256	2048	4096	\triangle	＊7
	Link special relay［SB］	－	2048		\bigcirc	＊3
	Link special register［SW］	－	2048		\bigcirc	＊3
	Function input ［FX］	－	16		\bigcirc	
	Function output ［FY］	－	16		\bigcirc	
	Function register［FD］	－	5	5 points $\times 4$ words	\bigcirc	
Number of comments	Comment	A1SJCPU（－S3）／ A1SCPU（C24－R2）： 1600 maximum A1SJH／A2SHCPU： 3648 A2SCPU／AnUS（H）CPU： 4032	51200 maximum	Within memory capacity	\bigcirc	
	Extended comment	3968 maximum	－	－	－	
Link direct device		－	For MELSECNET／10 only Specification format： Jロロㅁㅁ	Specified form：Jロ\Xロ， Jロ\Yロ，JaIWロ，Jロ\Bロ， JISSWロ，JロISBロ	\bigcirc	
Special function module direct device		－	Specified form：Uप\Gロ		\bigcirc	
Latch（data retention during power failure）range		1048	8192		\bigcirc	

Item	MELSEC-AnS/QnAS series		MELSEC iQ-R series	Compatibility	Precautions
	AnSCPU	QnASCPU	RnCPU		
RUN/PAUSE contact	A1SJCPU(-S3)/ A1SCPU(C24-R2)/ A2SCPU: One contact can be set up in X0 to FF for each of RUN and PAUSE. A1SJH/A2SHCPU: One contact can be set up in X0 to FF/1FF for each of RUN and PAUSE. AnUS(H)CPU: One contact can be set up in X0 to 1FFF for each of RUN and PAUSE.	One contact can be set up in X0 to 1FFF for each of RUN and PAUSE.	R00/R01/R02CPU: One contact can be set up in X0 to 1FFF for each of RUN and PAUSE. R04/R08CPU: One contact can be set up in X0 to 2FFF for each of RUN and PAUSE.	\bigcirc	
Internal current consumption (5VDC)	A1SJHCPU (including the base unit and power supply module)/ A1SHCPU: 0.3A A1SJCPU(-S3) (including the base unit and power supply module)/A1SCPU/ A2SHCPU: 0.4A A1SCPUC24-R2: 0.56A A2SCPU: 0.47A AnUS(H)CPU: 0.32A	$\begin{aligned} & \text { Q2ASCPU(-S1): 0.3A } \\ & \text { Q2ASHCPU(-S1): } 0.7 \mathrm{~A} \end{aligned}$	0.67A	-	
External dimensions	A1SJ(H)CPU(-S3) (including the base unit and power supply module): $130(\mathrm{H}) \times 330(\mathrm{~W})$ $\times 82$ (D)mm A1S(H)CPU(C24-R2)/ A2S(H)CPU/ AnUS(H)CPU: $130(\mathrm{H}) \times$ $54.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	$\begin{aligned} & 130(\mathrm{H}) \times 54.5(\mathrm{~W}) \times \\ & 110(\mathrm{D}) \mathrm{mm} \end{aligned}$	$\begin{aligned} & 106(\mathrm{H}) \times 27.8(\mathrm{~W}) \times \\ & 110(\mathrm{D}) \mathrm{mm} \end{aligned}$	-	
Weight	A1SJ(H)CPU(-S3) (including the base unit and power supply module): 1.0 kg A1SH/A2SHCPU: 0.53 kg A1SCPU: 0.37 kg A1SCPUC24-R2/ A2USCPU: 0.41 kg A2SCPU: 0.43 kg A2USHCPU-S1: 0.46 kg	0.50 kg	0.20 kg	-	

*1 The relay symbol language is equivalent to the ladder diagram (LD).
*2 The RnCPU does not support the microcomputer program. Consider replacing it with other programs such as the sequence program.
*3 The number of device points to use can be changed with the engineering tool.
*4 The maximum value is $[\alpha+\beta]$.
α : <Capacity of the $\mathrm{R}^{* *} \mathrm{CPU}$ > (R04CPU: 160K words, R08CPU: 544K words)
β : Capacity of the extended SRAM cassette
The value must be in the following range.
File register file storage area $\leq[\alpha+\beta]$
*5 This device is converted to the special register area of SD718 or SD719 automatically when the project is converted.
*6 The device " V " is used as the edge relay in the RnCPU.
*7 The special relay areas of M9000 or later are replaced with those of SM, and the special register areas of D9000 or later are replaced with those of SD in the RnCPU.

2.3 Function Comparison Table

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-AnS/QnAS series		MELSEC iQ-R series	Precautions
		AnSCPU	QnASCPU	RnCPU	
Constant scan	Executes the sequence program at constant time intervals regardless of the processing time of the program.	\bigcirc	\bigcirc	\triangle	Set this function with the special register D9020 for the AnSCPU, and with parameters for the QnASCPU and RnCPU.
Latch (data retention during power failure)	Holds the data of devices in the event of power OFF, resetting, and a momentary power failure longer than the allowable momentary power failure period.	\bigcirc	\bigcirc	\bigcirc	
Remote RUN/STOP	Executes the remote RUN/STOP using external switches and peripheral devices.	\bigcirc	\bigcirc	\bigcirc	
PAUSE	Stops operations while holding the output status.	\bigcirc	\bigcirc	\triangle	The RnCPU transitions to the PAUSE state by turning on the PAUSE contact only, while the AnSCPU and QnASCPU transition by turning on both the PAUSE contact and the special relay M9040 and SM206, respectively.
Interrupt processing	Executes the program that corresponds to the cause when an interrupt cause occurs.	\bigcirc	\bigcirc	\bigcirc	
Microcomputer mode	Executes various controls and operations over utility programs and user created microcomputer programs stored in the microcomputer program area by calling them from the sequence program.	(except for the A2US(H)CPU)	\times	\times	The RnCPU does not support the microcomputer program. Consider replacing it with a sequence program.
ERROR LED display priority ranking	Sets for ON/OFF of ERROR LED at the occurrence of error.	\bigcirc	\bigcirc	\bigcirc	
File management	Manages all data such as parameters, sequence programs, device comments, file registers, as files.	\times	\bigcirc	\bigcirc	Memory configuration and data to be stored differ.
Structured program	Selects a suitable execution type for program application, and divides each program by designer, process or others.	\times	\bigcirc	\bigcirc	
I/O assignment	Performs the I/O assignment to any individual module regardless of its mounted position.	\times	\bigcirc	\bigcirc	
ROM operation	Enables operation with parameters and programs stored in ROMs in order not to lose user programs due to battery exhaustion.	\bigcirc	\bigcirc	\bigcirc	With the RnCPU, the ROM operation is not required since the program memory is the flash ROM.
Data protection function (system protect, keyword registration/password registration)	Prohibits reading/writing from peripheral devices to programs and comments in the memory cassettes, the memory card, and built-in memory of a CPU module.	\bigcirc	\bigcirc	\triangle	Programs can be protected from read/write using passwords in the RnCPU, while parameters/programs in the user memory can be protected from read/write using keywords in the AnSCPU/QnASCPU.

Function		MELSEC-AnS/QnAS series		MELSEC iQ-R series RnCPU	Precautions
		AnSCPU	QnASCPU		
Initial device value	Sets an initial value of device memory, file registers, and special function modules when the CPU module is placed in RUN status.	\times	\bigcirc	\bigcirc	Memory configuration and data to be stored differ.
Output status setting at changing from STOP to RUN	Sets the output (Y) status at the change from STOP to RUN to reoutputting data before STOP or outputting data after the operation execution.	\bigcirc	\bigcirc	\bigcirc	
Number of general data processing	Sets the number of general data processing executed in one END operation.	\times	\bigcirc	\bigcirc	
Clock function	The CPU module incorporates a clock, which can be read/written. The clock data consists of year, month, day, hour, minute, second and a day of the week.	\bigcirc	\bigcirc	\triangle	The RnCPU uses 4-digit year of the western calendar while the AnSCPU/ QnASCPU uses the lower 2digit year.
Write during RUN	Changes (writes to) programs when the CPU module is in the RUN status.	\bigcirc	\bigcirc	\bigcirc	Setting the reserved area for online change is required for the RnCPU.
Status latch	Stores the data of all devices in a memory cassette or a memory card at the occurrence of an error for monitoring by a peripheral.	\bigcirc	$\bigcirc{ }^{* 1}$	\times	The status latch function cannot be used in the RnCPU.
Sampling trace	Stores the data of specified devices in a memory cassette or a memory card at the specified intervals for monitoring by a peripheral.	\bigcirc	\bigcirc	\times	The sampling trace function cannot be used in the RnCPU. Use the trigger logging in the data logging function instead.
Program trace	Collects the execution status of specified programs and steps, and stores them in a file.	\times	$\bigcirc{ }^{* 1}$	\times	The program trace function cannot be used in the RnCPU.
Simulation function	Detaches I/O modules or special modules from the CPU module and test-operates the program upon the step operation.	\times	$\bigcirc{ }^{* 1}$	\triangle	Use the simulation function of the GX Works3 instead.
Step operation	Stops the execution of a sequence program at the specified step.	\bigcirc	\bigcirc	\times	The step operation function cannot be used in the RnCPU.
Execution time measurement (Program list monitor, scan time measurement)	Measures the operation time for each program.	\times	\bigcirc	\bigcirc	
Module access interval reading	Monitors the access interval of special function modules or peripheral devices.	\times	\bigcirc	\bigcirc	
Off-line switch	Skips the devices used for OUT instruction in the operation processing of sequence program.	\bigcirc	\times	\times	The off-line switch function cannot be used in the RnCPU. Use the external input/ output forced on/off function of the RnCPU instead.
Self-diagnostics	Diagnoses whether any error has occurred, detects errors, and stops the CPU module, etc.	\bigcirc	\bigcirc	\bigcirc	Error codes differ from the ones of ACPU and QnACPU.
Error history	Stores errors detected by the diagnostics function into the CPU module or a memory card. Error details can be monitored from peripherals.	\times	\bigcirc	\bigcirc	

2.4 Precautions for Replacement

The Memory configuration differs between the MELSEC-AnS/QnAS series CPU module and the MELSEC iQ-R series CPU module. Depending on the capacity and application of the memory before replacement, consider which memory to use and whether to use a memory card.

MELSEC-QnAS series

| Memory
 card A
 (RAM)
 Program, parameter,
 comment,
 device initial value,
 file register, local device,
 error history
 (Drive 1) |
| :--- | :--- |
| Memory
 card A
 (ROM)
 Program, parameter,
 comment,
 device initial value,
 file register
 (Drive 2) |

MELSEC iQ-R series

Extended SRAM cassette $^{* 1}$ File register, local device (Drive 1) Program, parameter, comment, device initial value, Sile register, local device, error history card	
(Drive 2)	

*1 The R00CPU, R01CPU, and R02CPU do not support the extended SRAM cassette.
*2 The R00CPU does not support SD memory cards.

Write during RUN

Before executing the online change function (the write during RUN function) in the MELSEC iQ-R series CPU module, reserve the area in advance for the program size that will be increased.
The default reserved area for online change is 500 steps (2000 bytes).

Parameters

Set parameters, such as the program setting, that are specific to each CPU module in the CPU parameter. In addition, set the module parameter to use the built-in Ethernet function of the CPU module, and set the memory card parameter to perform boot operation.

Sampling trace

The sampling trace function cannot be used in the RCPU.
Use the trigger logging of the data logging function instead. Note that an SD memory card is required to store the data because the CPU built-in memory cannot be used as data storage destination.

Password and keyword

In the RCPU, passwords are used to protect data such as programs from read/write, while in the AnSCPU/QnASCPU, keywords are used. I/O MODULE REPLACEMENT

3.1 Alternative Model List

This section lists alternative models of the MELSEC iQ-R series I/O modules in accordance with the specifications of the MELSEC-AnS/QnAS series I/O modules.
Select models that best suit your application considering the specifications of the MELSEC-AnS/QnAS series I/O module currently used.

Item	MELSEC-AnS/QnAS series	MELSEC iQ-R series	Specification difference
Input module	A1SX10	RX10	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: OFF current and input impedance are changed. (5) Functions: Not changed
	A1SX10EU	RX10	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: OFF current and input impedance are changed. (5) Functions: Not changed
	A1SX20	RX28	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Changed (2 modules are required.) (3) Programs: The number of occupied I/O points is changed ($16 \rightarrow 16 \times 2$ modules). The number of input points is changed ($16 \rightarrow 8 \times 2$ modules). (4) Specifications: ON current, OFF current, and input impedance are changed. (5) Functions: Not changed
	A1SX20EU	RX28	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Changed (2 modules are required.) (3) Programs: The number of occupied I/O points is changed ($16 \rightarrow 16 \times 2$ modules). The number of input points is changed ($16 \rightarrow 8 \times 2$ modules). (4) Specifications: ON current, OFF current, and input impedance are changed. (5) Functions: Not changed
	A1SX30 (when 24VDC is used)	RX40C7	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current $(8.5 \mathrm{~mA} \rightarrow 7 \mathrm{~mA})$, ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX30 (when 12VDC is used)	RX70C4	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX30 (when 12/24VAC is used)	None	Commute and smooth the $12 / 24 \mathrm{VAC}$ externally before inputting to the RX40C7 (24VDC) or RX70C4 (5/12VDC).
	A1SX40 (when 24VDC is used)	RX40C7	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current and OFF voltage/OFF current are changed. (5) Functions: Not changed

Item	MELSEC-AnS/QnAS series	MELSEC iQ-R series	Specification difference
Input module	A1SX40 (when 12VDC is used)	RX70C4	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX40-S1	RX40C7	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage and OFF voltage/OFF current are changed. (5) Functions: Not changed
	A1SX40-S2	RX40C7	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current and OFF voltage/OFF current are changed. (5) Functions: Not changed
	A1SX41 (when 24VDC is used)	RX41C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current (Approx. $7 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage, and input resistance are changed. (5) Functions: Not changed
	A1SX41 (when 12VDC is used)	RX71C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX41-S1	RX41C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current (Approx. $7 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX41-S2	RX41C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current (Approx. $7 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX42 (when 24 VDC is used)	RX42C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current (Approx. $5 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX42 (when 12VDC is used)	RX72C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX42-S1	RX42C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current (Approx. $5 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed

Item	MELSEC-AnS/QnAS series	MELSEC iQ-R series	Specification difference
Input module	A1SX42-S2	RX42C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current (Approx. $5 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX71 (when 24VDC is used)	RX41C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current (Approx. $7 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX71 (when $5 / 12 \mathrm{VDC}$ is used)	RX71C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Input resistance is changed. (5) Functions: Not changed
	A1SX80 (when 24VDC is used)	RX40C7	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current and OFF voltage/OFF current are changed. (5) Functions: Not changed
	A1SX80 (when 12VDC is used)	RX70C4	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX80-S1	RX40C7	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current and OFF voltage/OFF current are changed. (5) Functions: Not changed
	A1SX80-S2	RX40C7	(1) External wiring: Changed (An upgrade tool conversion adapter can be used.) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current and OFF voltage/OFF current are changed. (5) Functions: Not changed
	A1SX81 (when 24VDC is used)	RX41C4	(1) External wiring: Changed (37-pin D-sub connector $\rightarrow 40$-pin connector. An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current (Approx. $7 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage, and input resistance are changed. (5) Functions: Not changed
	A1SX81 (when 12VDC is used)	RX71C4	(1) External wiring: Changed (37-pin D-sub connector $\rightarrow 40$-pin connector. An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX81-S2	RX41C4	(1) External wiring: Changed (37-pin D-sub connector $\rightarrow 40$-pin connector. An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current (Approx. $7 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed

Item	MELSEC-AnS/QnAS series	MELSEC iQ-R series	Specification difference
Input module	A1SX82-S1	RX42C4	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current (Approx. $5 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
Output module	A1SY10	RY10R2	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Not changed
	A1SY10EU	RY10R2	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated output current is not changed. (Note that the contact life span is reduced to half.) (5) Functions: Not changed
	A1SY14EU	RY10R2	(1) External wiring: Changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated output current is not changed. (Note that the contact life span is reduced to half.) (5) Functions: Not changed
	A1SY18A	RY18R2A	(1) External wiring: Changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated output current is not changed. (Note that the contact life span is reduced to half.) (5) Functions: Not changed
	A1SY18AEU	RY18R2A	(1) External wiring: Changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated output current is not changed. (Note that the contact life span is reduced to half.) (5) Functions: Not changed
	A1SY22	RY20S6	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Changed (No fuse)
	A1SY28A A1SY28EU	None	Consider replacing it with the RY40NT5P and FA-TH16YSR20S*1.
	A1SY40	RY40NT5P	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Changed (No fuse. The protection function is added.)
	A1SY40P	RY40NT5P	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Not changed
	A1SY41	RY41NT2P	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Changed (No fuse. The protection function is added.)

Item	MELSEC-AnS/QnAS series	MELSEC iQ-R series	Specification difference
Output module	A1SY41P	RY41NT2P	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Not changed
	A1SY42	RY42NT2P	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Changed (No fuse. The protection function is added.)
	A1SY42P	RY42NT2P	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Not changed
	A1SY50	RY40NT5P	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Changed (No fuse. The protection function is added.)
	A1SY60	RY10R2	(1) External wiring: Changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: An output type is changed (transistor output \rightarrow contact output). A response time is changed ($2 / 2 \mathrm{~ms}$ or less $\rightarrow 10 / 12 \mathrm{~ms}$ or less). (5) Functions: Changed (No surge suppressor, no fuse)
	A1SY60E	RY10R2	(1) External wiring: Changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: An output type is changed (transistor output \rightarrow contact output). A response time is changed ($3 / 10 \mathrm{~ms}$ or less $\rightarrow 10 / 12 \mathrm{~ms}$ or less). (5) Functions: Changed (No surge suppressor, no fuse)
	A1SY68A	RY18R2A	(1) External wiring: Changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: An output type is changed (transistor output \rightarrow contact output). A response time is changed ($3 / 10 \mathrm{~ms}$ or less $\rightarrow 10 / 12 \mathrm{~ms}$ or less). (5) Functions: Changed (No surge suppressor)
	A1SY71	RY41NT2H	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Changed (The surge suppressor is added. No fuse.)
	A1SY80	RY40PT5P	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated output current is changed ($0.8 \mathrm{~A} \rightarrow 0.5 \mathrm{~A}$). (5) Functions: Changed (No fuse. The protection function is added.)
	A1SY81	RY41PT1P	(1) External wiring: Changed (37-pin D-sub connector $\rightarrow 40$-pin connector. An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Changed (No fuse. The protection function is added.)
	A1SY81EP	RY41PT1P	(1) External wiring: Changed (37-pin D-sub connector $\rightarrow 40$-pin connector. An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Not changed

Item	MELSEC-AnS/QnAS series	MELSEC iQ-R series	Specification difference
Output module	A1SY82	RY42PT1P	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Not changed (5) Functions: Changed (No fuse. The protection function is added.)
I/O module	A1SH42	RH42C4NT2P	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input voltage ($12 / 24 \mathrm{VDC} \rightarrow 24 \mathrm{VDC}$), rated input current $(5 \mathrm{~mA} \rightarrow 4 \mathrm{~mA})$, ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Changed (No fuse. The protection function is added.)
	A1SH42P	RH42C4NT2P	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input voltage ($12 / 24 \mathrm{VDC} \rightarrow 24 \mathrm{VDC}$), rated input current ($5 \mathrm{~mA} \rightarrow 4 \mathrm{~mA}$), ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SH42-S1	RH42C4NT2P	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current $(5 \mathrm{~mA} \rightarrow 4 \mathrm{~mA})$, ON voltage, OFF voltage/ OFF current, and input resistance are changed. (5) Functions: Changed (No fuse. The protection function is added.)
	A1SH42P-S1	RH42C4NT2P	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: Not changed (4) Specifications: Rated input current $(5 \mathrm{~mA} \rightarrow 4 \mathrm{~mA})$, ON voltage, OFF voltage/ OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SX48Y18	$\begin{aligned} & \text { RX40C7 } \\ & + \\ & \text { RY10R2 } \end{aligned}$	(1) External wiring: Changed (2) Number of slots: Changed (2 modules are required.) (3) Programs: The number of occupied I/O points is changed ($16 \rightarrow 16 \times 2$ modules). The number of I/O points is changed ($16 \rightarrow 16 \times 2$ modules). (4) Specifications: ON voltage/ON current and OFF voltage/OFF current are changed. (5) Functions: Not changed
	A1SX48Y58	$\begin{aligned} & \text { RX40C7 } \\ & + \\ & \text { RY40NT5P } \end{aligned}$	(1) External wiring: Changed (2) Number of slots: Changed (2 modules are required.) (3) Programs: The number of occupied I/O points is changed ($16 \rightarrow 16 \times 2$ modules). The number of I/O points is changed ($16 \rightarrow 16 \times 2$ modules). (4) Specifications: ON voltage/ON current and OFF voltage/OFF current are changed. (5) Functions: Changed (No fuse. The protection function is added.)
	A1SJ-56DT	$\begin{aligned} & \text { RX40C7 } \\ & + \\ & \text { RY40NT5P } \end{aligned}$	(1) External wiring: Changed (2) Number of slots: Changed (5 slots occupied $\rightarrow 4$ modules) (3) Programs: The number of occupied I/O points is changed ($128 \rightarrow 16 \times 4$ modules). The number of I/O points is changed ($56 \rightarrow 16 \times 4$ modules). (4) Specifications: ON voltage/ON current and OFF voltage/OFF current are changed. (5) Functions: Changed (The protection function is added.)
	A1SJ-56DR		(1) External wiring: Changed (2) Number of slots: Changed (5 slots occupied $\rightarrow 4$ modules) (3) Programs: The number of occupied I/O points is changed (128 $\rightarrow 16 \times 4$ modules). The number of I/O points is changed ($56 \rightarrow 16 \times 4$ modules). (4) Specifications: ON voltage/ON current and OFF voltage/OFF current are changed. (5) Functions: Not changed
Dynamic input module	A1S42X	None	Consider using the RX42C4 after converting I/O signal from dynamic to static.
	A1S42Y	None	Consider using the RY42NT2P after converting I/O signal from dynamic to static.

Item	MELSEC-AnS/QnAS series	MELSEC iQ-R series	Specification difference
Interrupt module	A1SI61 (when 24VDC is used)	RX40C7	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed ($32 \rightarrow 16$). (4) Specifications: Rated input current (Approx. $8 \mathrm{~mA} \rightarrow 7 \mathrm{~mA}$), ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
	A1SI61 (when 12VDC is used)	RX70C4	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed $(32 \rightarrow 16)$. (4) Specifications: ON voltage/ON current, OFF voltage/OFF current, and input resistance are changed. (5) Functions: Not changed
Dummy module	A1SG62	None	■ Dummy module function Consider using the RG60 and I/O assignment setting.
Blank cover module	A1SG60	RG60	None in particular

*1 Please consult your local Mitsubishi Electric representative.

3.2 Specification Comparison Tables

Input modules

A1SX10 and RX10

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX10	RX10		
Input type		AC input		\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage/rated frequency		$\begin{aligned} & 100 \text { to } 120 \text { VAC (+10/-15\%), } 50 / \\ & 60 \mathrm{~Hz}(\pm 5 \%) \end{aligned}$	$\begin{aligned} & 100 \text { to } 120 \mathrm{VAC}(+10 /-15 \%), 50 / \\ & 60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz}) \end{aligned}$	\bigcirc	
Input voltage distortion		Within 5\%		\bigcirc	
Rated input current		Approx. 6mA (100VAC, 60Hz)	8.2mA (100VAC, 60 Hz) 6.8 mA ($100 \mathrm{VAC}, 50 \mathrm{~Hz}$)	\bigcirc	
Maximum number of simultaneous input points		Refer to the derating chart.*2		\triangle	Use the module within the range shown in the derating chart.
Inrush current		200mA maximum, within 1 ms		\bigcirc	
ON voltage/ON current		80 VAC or higher/ 5 mA or higher ($50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)		\bigcirc	
OFF voltage/OFF current		30 VAC or lower/1.4mA or lower	30 VAC or lower/ 1.7 mA or lower $(50 \mathrm{~Hz}, 60 \mathrm{~Hz})$	\triangle	The OFF current is changed after replacement. ${ }^{*}$
Input impedance		Approx. $18 \mathrm{k} \Omega(60 \mathrm{~Hz})$, approx. $21 \mathrm{k} \Omega$ (50Hz)	$12.2 \mathrm{k} \Omega(60 \mathrm{~Hz}), 14.6 \mathrm{k} \Omega(50 \mathrm{~Hz})$	\triangle	The input impedance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	20 ms or less (100VAC, 60 Hz)	15 ms or less (100VAC $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)	\bigcirc	
	ON to OFF	35 ms or less (100VAC, 60 Hz)	20 ms or less ($100 \mathrm{VAC} 50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTXY10), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)		\bigcirc	
Internal current consumption(5VDC)		50 mA (TYP. all points ON)	110 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.21 kg	0.18 kg	-	

*1 Check the specifications of sensors and switches connected to the RX10.
*2 The following figure shows a derating chart.

A1SX10

RX10

A: Input voltage 120VAC

- : Input voltage 132VAC

X : Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
Y: Number of simultaneous on points (point)
*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX10EU and RX10

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX10EU	RX10		
Input type		AC input		\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage/rated frequency		$\begin{aligned} & 110 \text { to } 120 \text { VAC (+10/-15\%), } 50 / \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 100 \text { to } 120 \mathrm{VAC}(+10 /-15 \%), 50 / \\ & 60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz}) \end{aligned}$	\bigcirc	
Input voltage distortion		Within 5\%		\bigcirc	
Rated input current		Approx. 7 mA (120VAC, 60 Hz)	$8.2 \mathrm{~mA}(100 \mathrm{VAC}, 60 \mathrm{~Hz})$ 6.8 mA ($100 \mathrm{VAC}, 50 \mathrm{~Hz}$)	\bigcirc	
Maximum number of simultaneous input points		100\% (16 points)	Refer to the derating chart. ${ }^{*}{ }^{2}$	\triangle	Use the module within the range shown in the derating chart.
Inrush current		200mA maximum, within 1 ms		\bigcirc	
ON voltage/ON current		80 VAC or higher/ 5 mA or higher ($50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)		\bigcirc	
OFF voltage/OFF current		30 VAC or lower/1.4mA or lower	30VAC or lower/1.7mA or lower $(50 \mathrm{~Hz}, 60 \mathrm{~Hz})$	\triangle	The OFF current is changed after replacement. ${ }^{*}$
Input impedance		Approx. $18 \mathrm{k} \Omega(60 \mathrm{~Hz})$, approx. $21 \mathrm{k} \Omega$ (50Hz)	$12.2 \mathrm{k} \Omega(60 \mathrm{~Hz}), 14.6 \mathrm{k} \Omega(50 \mathrm{~Hz})$	\triangle	The input impedance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	20 ms or less (100VAC, 60 Hz)	15 ms or less (100VAC $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)	\bigcirc	
	ON to OFF	35 ms or less (100VAC, 60Hz)	20 ms or less ($100 \mathrm{VAC} 50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)	\bigcirc	
Withstand voltage		1780VAC rms/3 cycles (Altitude 2000m)	1400VAC rms for 1 minute	\bigcirc	
Isolation resistance		$10 \mathrm{M} \Omega$ or more by insulation resistance tester		\bigcirc	
Noise immunity		IEC 801-4: 1 kV	By noise simulator of $1500 \mathrm{Vp}-\mathrm{p}$ noise voltage, $1 \mu \mathrm{~s}$ noise width and 25 to 60 Hz noise frequency	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTXY10), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}{ }^{3}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$ (16 to 19 AWG)	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		RAV1.25-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)		\bigcirc	
Internal current consumption (5VDC)		50mA (TYP. all points ON)	110 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8(\mathrm{~W}) \times 131$ (D) mm	-	
Weight		0.21 kg	0.18 kg	-	

*1 Check the specifications of sensors and switches connected to the RX10.
*2 The following figure shows a derating chart.

A: Input voltage 120VAC

- : Input voltage 132VAC

X : Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
Y: Number of simultaneous on points (point)
*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX20 and RX28

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX20	RX28		
Input type		AC input		\bigcirc	
Number of input points		16	8	\triangle	When 9 or more points are required, use two modules of the RX28.
Isolation method		Photocoupler		\bigcirc	
Rated input voltage/rated frequency		$\begin{aligned} & 200 \text { to } 240 \mathrm{VAC}(+10 /-15 \%), 50 / \\ & 60 \mathrm{~Hz}(\pm 5 \%) \end{aligned}$	$\begin{aligned} & 100 \text { to } 240 \mathrm{VAC}(+10 /-15 \%), 50 / \\ & 60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz}) \end{aligned}$	\bigcirc	
Input voltage distortion		Within 5\%		\bigcirc	
Rated input	rent	Approx. 9mA (200VAC, 60Hz)	16.4 mA (200VAC, 60 Hz) 13.7 mA (200VAC, 50 Hz) 8.2 mA ($100 \mathrm{VAC}, 60 \mathrm{~Hz}$) $6.8 \mathrm{~mA}(100 \mathrm{VAC}, 51 \mathrm{~Hz})$	\bigcirc	
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}$ 2		\bigcirc	
Inrush current		500mA maximum within 1 ms (at 264VAC)	950mA maximum within 1 ms (at 264VAC)	\triangle	The inrush current is increased after replacement. ${ }^{* 1}$
ON voltage/ON current		80VAC or higher/4mA or higher	80VAC or higher/5mA or higher $(50 \mathrm{~Hz}, 60 \mathrm{~Hz})$	\triangle	The ON current is changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		30VAC or lower/1mA or lower	30VAC or lower/1.7mA or lower $(50 \mathrm{~Hz}, 60 \mathrm{~Hz})$	\triangle	The OFF current is changed after replacement. ${ }^{* 1}$
Input impedance		Approx. $22 \mathrm{k} \Omega(60 \mathrm{~Hz})$, approx. $27 \mathrm{k} \Omega$ (50Hz)	$12.1 \mathrm{k} \Omega(60 \mathrm{~Hz}), 14.5 \mathrm{k} \Omega(50 \mathrm{~Hz})$	\triangle	The input impedance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	30 ms or less (200VAC, 60Hz)	10 ms or less (200VAC $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)	\bigcirc	
	ON to OFF	55 ms or less (200VAC, 60 Hz)	20 ms or less (200VAC $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	8 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR20X), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)	16 (I/O assignment: Input 16 points)	\triangle	The number of input points is 8, but 16 points are occupied.
Internal current consumption (5VDC)		50 mA (TYP. all points ON)	90 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.23 kg	0.18 kg	-	

*1 Check the specifications of sensors and switches connected to the RX28.
*2 The following figure shows a derating chart.
A1SX20

RX28

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX20EU and RX28

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX20EU	RX28		
Input type		AC input		\bigcirc	
Number of input points		16	8	\triangle	When 9 or more points are required, use two modules of the RX28.
Isolation method		Photocoupler		\bigcirc	
Rated input voltage/rated frequency		$\begin{aligned} & 200 \text { to } 240 \mathrm{VAC}(+10 /-15 \%), 50 / \\ & 60 \mathrm{~Hz}(\pm 5 \%) \end{aligned}$	$\begin{aligned} & 100 \text { to } 240 \mathrm{VAC}(+10 /-15 \%), 50 / \\ & 60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz}) \end{aligned}$	\bigcirc	
Input voltage distortion		Within 5\%		\bigcirc	
Rated input	rent	Approx. 9mA (200VAC, 60Hz)	16.4 mA (200VAC, 60 Hz) 13.7 mA ($200 \mathrm{VAC}, 50 \mathrm{~Hz}$) 8.2 mA ($100 \mathrm{VAC}, 60 \mathrm{~Hz}$) $6.8 \mathrm{~mA}(100 \mathrm{VAC}, 51 \mathrm{~Hz})$	\bigcirc	
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}$ 2		\bigcirc	
Inrush current		500mA maximum within 1 ms (at 264VAC)	950mA maximum within 1 ms (at 264VAC)	\triangle	The inrush current is increased after replacement. ${ }^{* 1}$
ON voltage/ON current		80VAC or higher/4mA or higher	80VAC or higher/ 5 mA or higher $(50 \mathrm{~Hz}, 60 \mathrm{~Hz})$	\triangle	The ON current is changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		30VAC or lower/1mA or lower	30 VAC or lower/1.7mA or lower $(50 \mathrm{~Hz}, 60 \mathrm{~Hz})$	\triangle	The OFF current is changed after replacement. ${ }^{* 1}$
Input impedance		Approx. $22 \mathrm{k} \Omega(60 \mathrm{~Hz})$, approx. $27 \mathrm{k} \Omega$ (50Hz)	$12.1 \mathrm{k} \Omega(60 \mathrm{~Hz}), 14.5 \mathrm{k} \Omega(50 \mathrm{~Hz})$	\triangle	The input impedance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	30 ms or less (200VAC, 60Hz)	10 ms or less (200VAC $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)	\bigcirc	
	ON to OFF	55 ms or less (200VAC, 60Hz)	20 ms or less (200VAC $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$)	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	8 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR20X), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)	16 (I/O assignment: Input 16 points)	\triangle	The number of input points is 8, but 16 points are occupied.
Internal current consumption (5VDC)		50mA (TYP. all points ON)	90mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.23 kg	0.18 kg	-	

*1 Check the specifications of sensors and switches connected to the RX28.
*2 The following figure shows a derating chart.
A1SX20EU
RX28

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX30 (when 24VDC is used) and RX40C7

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1SX30	RX40C7	DC input (positive common/ negative common shared type)	O

*1 Check the specifications of sensors and switches connected to the RX40C7.
*2 The following figure shows a derating chart.

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX30 (when 12VDC is used) and RX70C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX30	RX70C4		
Input type		AC/DC input	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		DC input: 12/24VDC (+10/-15\%, ripple ratio within 5%) AC input: 12/24VAC (+10/-15\%), $50 / 60 \mathrm{~Hz}(\pm 5 \%)$	5/12VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		8.5mA (24VDC/VAC) 4mA (12VDC/VAC)	1.7mA TYP. (at 5VDC) 4.8mA TYP. (at 12VDC)	\bigcirc	
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}{ }^{2}$	100\% (16 points)	\bigcirc	
ON voltage/ON current		7VDC/VAC or higher/2mA or higher	3.5 V or higher/ 1 mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*}$
OFF voltage/OFF current		2.7VDC/VAC or lower/0.7mA or lower	1V or lower/0.1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. $2.7 \mathrm{k} \Omega$	$2.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	$\begin{aligned} & 20 \mathrm{~ms} \text { or less }(12 / 24 \mathrm{VDC}) \\ & 25 \mathrm{~ms} \text { or less }(12 / 24 \mathrm{VAC}, 60 \mathrm{~Hz}) \end{aligned}$	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 20 ms .
	ON to OFF	$\begin{aligned} & 20 \mathrm{~ms} \text { or less }(12 / 24 \mathrm{VDC}) \\ & 20 \mathrm{~ms} \text { or less }(12 / 24 \mathrm{VAC}, 60 \mathrm{~Hz}) \end{aligned}$	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTX40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}$ 4
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)		\bigcirc	
Internal current consumption (5VDC)		50mA (TYP. all points ON)	100mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

*1 Check the specifications of sensors and switches connected to the RX70C4.
*2 The following figure shows a derating chart.

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.2 ms	0.3 ms	0.4 ms	0.5 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.41 ms	0.5 ms	0.6 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX40 (when 24VDC is used) and RX40C7

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX40	RX40C7		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		Approx. 3mA (12VDC) Approx. 7mA (24VDC)	7mA TYP. (at 24VDC)	\bigcirc	
Maximum number of simultaneous input points		100\% (16 points)	100\% (16 points)	\bigcirc	
ON voltage/ON current		8VDC or higher/2mA or higher	15 V or higher/4mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		4VDC or lower/1mA or lower	8 V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k ,	3.3 k ת	\bigcirc	
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 2}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTX40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)		\bigcirc	
Internal current consumption(5VDC)		50 mA (TYP. all points ON)	110 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

*1 Check the specifications of sensors and switches connected to the RX40C7.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX40 (when 12VDC is used) and RX70C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1SX40	RX70C4		
Input type	DC input (positive common type)	DC input (positive common/ negative common shared type)	O	
Number of input points	16		O	
Isolation method	Photocoupler	$12 / 24 \mathrm{VDC} \mathrm{(+10/-15} \mathrm{\%} ripple ratio$, within 5%)	$5 / 12 \mathrm{VDC} \mathrm{(+20/-15} \mathrm{\%} ripple ratio$, within 5\%)	O

*1 Check the specifications of sensors and switches connected to the RX70C4.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20ms	70ms
OFF to ON (MAX.)	0.2 ms	0.3 ms	0.4 ms	0.5 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.41 ms	0.5 ms	0.6 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX40-S1 and RX40C7

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX40-S1	RX40C7		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{*}{ }^{1}$
Rated input current		Approx. 7 mA	7 mA TYP. (at 24VDC)	\bigcirc	
Maximum number of simultaneous input points		100\% (16 points)	100\% (16 points)	\bigcirc	
ON voltage/ON current		14VDC or higher/4mA or higher	15 V or higher/ 4 mA or higher	\triangle	The ON voltage is changed after replacement. ${ }^{*}$
OFF voltage/OFF current		6.5 VDC or lower/1.7mA or lower	8 V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k Ω	$3.3 \mathrm{k} \Omega$	\bigcirc	
Response time	OFF to ON	0.1 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	Set the input response time of parameters to 0.1 ms .
	ON to OFF	0.2 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTX40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}{ }^{3}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)		\bigcirc	
Internal current consumption (5VDC)		50 mA (TYP. all points ON)	110mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

*1 Check the specifications of sensors and switches connected to the RX40C7.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX40-S2 and RX40C7

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX40-S2	RX40C7		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{*}{ }^{1}$
Rated input current		Approx. 7 mA	7 mA TYP. (at 24VDC)	\bigcirc	
Maximum number of simultaneous input points		100\% (16 points)	100\% (16 points)	\bigcirc	
ON voltage/ON current		14VDC or higher/3.5mA or higher	15 V or higher/ 4 mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*}$
OFF voltage/OFF current		6.5VDC or lower/ 1.7 mA or lower	8 V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{*}$
Input resistance		Approx. 3.3k	3.3k ,	\bigcirc	
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 2}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTX40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)		\bigcirc	
Internal current consumption (5VDC)		50mA (TYP. all points ON)	110 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

*1 Check the specifications of sensors and switches connected to the RX40C7.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX41 (when 24VDC is used) and RX41C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX41	RX41C4		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		Approx. 3mA (12VDC) Approx. 7mA (24VDC)	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}{ }^{2}$		\bigcirc	
ON voltage/ON current		8VDC or higher/2mA or higher	19V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*} 1$
OFF voltage/OFF current		4VDC or lower/1mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage is changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: B1, B2)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		40-pin connector (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	used.
Number of occupied I/O points		32 (//O assignment: Input 32 points)		\bigcirc	
Internal current consumption (5VDC)		80mA (TYP. all points ON)	150mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.21 kg	0.11 kg	-	

*1 Check the specifications of sensors and switches connected to the RX41C4.
*2 The following figure shows a derating chart.

A1SX4

RX41C4

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX41 (when 12VDC is used) and RX71C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX41	RX71C4		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5\%)	5/12VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		Approx. 3mA (12VDC) Approx. 7mA (24VDC)	1.7mA TYP. (at 5VDC) 4.8mA TYP. (at 12VDC)	\bigcirc	
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}{ }^{2}$	100\% (32 points)	\bigcirc	
ON voltage/ON current		8VDC or higher/2mA or higher	3.5 V or higher/1mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		4VDC or lower/1mA or lower	1 V or lower/0.1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k Ω	$2.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: B1, B2)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		40-pin connector (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	used.
Number of occupied I/O points		32 (I/O assignment: Input 32 points)		\bigcirc	
Internal current consumption (5VDC)		80mA (TYP. all points ON)	140mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.21 kg	0.12 kg	-	

*1 Check the specifications of sensors and switches connected to the RX71C4.
*2 The following figure shows a derating chart.

Number of simultaneous on points (ratio)

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1ms	5 ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.21 ms	0.3 ms	0.5 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX41-S1 and RX41C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX41-S1	RX41C4		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{* 1}$
Rated input current		Approx. 7mA	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}$ 2		\bigcirc	
ON voltage/ON current		17VDC or higher/4.5mA or higher	19 V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		3.5 VDC or lower/ 0.8 mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{*}{ }^{1}$
Input resistance		Approx. 3.3k ,	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	0.3 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 0.2 ms .
	ON to OFF	0.3 ms or less	Configured in the parameter.* ${ }^{*}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: B1, B2)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		40-pin connector (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be used.
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points		32 (I/O assignment: Input 32 points)		\bigcirc	
Internal current consumption (5VDC)		120 mA (TYP. all points ON)	150mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.21 kg	0.11 kg	-	

*1 Check the specifications of sensors and switches connected to the RX41C4.
*2 The following figure shows a derating chart.

A1SX41-S1

RX41C4

: Input voltage 26.4VDC

- Input voltage 28.8VDC
X : Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
Y: Number of simultaneous on points (point)
*3 The following table shows the input response times.

Timing	Set value								
	$\mathbf{0 . 1} \mathbf{m s}$	$\mathbf{0 . 2} \mathbf{m s}$	$\mathbf{0 . 4} \mathbf{m s}$	$\mathbf{0 . 6 m s}$	$\mathbf{1 m s}$	$\mathbf{5 m s}$	$\mathbf{1 0 m s}$	$\mathbf{2 0 m s}$	$\mathbf{7 0 m s}$
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX41-S2 and RX41C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX41-S2	RX41C4		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement.
Rated input current		Approx. 7mA	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}$		\bigcirc	
ON voltage/ON current		14VDC or higher/3.5mA or higher	19 V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		6.5 VDC or lower/ 1.7 mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k ,	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: B1, B2)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		40-pin connector (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	use
Number of occupied I/O points		32 (I/O assignment: Input 32 points)		\bigcirc	
Internal current consumption(5VDC)		80 mA (TYP. all points ON)	150mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.21 kg	0.11 kg	-	

*1 Check the specifications of sensors and switches connected to the RX41C4.
*2 The following figure shows a derating chart.

A1SX41-S2

RX41C4

*3 The following table shows the input response times.

Timing	Set value								
	$\mathbf{0 . 1} \mathbf{m s}$	$\mathbf{0 . 2 m s}$	$\mathbf{0 . 4 m s}$	$\mathbf{0 . 6 m s}$	$\mathbf{1 m s}$	$\mathbf{5 m s}$	$\mathbf{1 0 m s}$	$\mathbf{2 0 m s}$	$\mathbf{7 0 m s}$
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	$\mathbf{1 m s}$	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX42 (when 24VDC is used) and RX42C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX42	RX42C4		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		64		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		Approx. 2mA (12VDC) Approx. 5mA (24VDC)	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}{ }^{2}$		\triangle	Use the module within the range shown in the derating chart.
ON voltage/ON current		8VDC or higher/2mA or higher	19V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*} 1$
OFF voltage/OFF current		4VDC or lower/0.6mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. $5 \mathrm{k} \Omega$	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: 1B1, 1B2, 2B1, 2B2)	32 points/common (common terminal: 1B01, 1B02, 2B01, 2B02)	\bigcirc	
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	
External interface		40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	us
Number of occupied I/O points		64 (I/O assignment: Input 64 points)		\bigcirc	
Internal current consumption(5VDC)		90mA (TYP. all points ON)	180mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.28 kg	0.13 kg	-	

*1 Check the specifications of sensors and switches connected to the RX42C4.
*2 The following figure shows a derating chart.
A1SX42
RX42C4

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX42 (when 12VDC is used) and RX72C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX42	RX72C4		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		64		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5\%)	5/12VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		Approx. 2mA (12VDC) Approx. 5mA (24VDC)	1.7mA TYP. (at 5VDC) 4.8mA TYP. (at 12VDC)	\bigcirc	
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}$	100\% (64 points)	\bigcirc	
ON voltage/ON current		8VDC or higher/2mA or higher	3.5 V or higher/1mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		4VDC or lower/0.6mA or lower	1 V or lower/0.1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. $5 \mathrm{k} \Omega$	$2.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: 1B1, 1B2, 2B1, 2B2)	32 points/common (common terminal: 1B01, 1B02, 2B01, 2B02)	\bigcirc	
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	
External interface		40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points		64 (I/O assignment: Input 64 points)		\bigcirc	
Internal current consumption (5VDC)		90mA (TYP. all points ON)	150mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.28 kg	0.14 kg	-	

*1 Check the specifications of sensors and switches connected to the RX72C4.
*2 The following figure shows a derating chart.
A1SX42

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.21 ms	0.3 ms	0.5 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX42-S1 and RX42C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX42-S1	RX42C4		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		64		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{* 1}$
Rated input current		Approx. 5mA	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{\text {2 }}$		\triangle	Use the module within the range shown in the derating chart.
ON voltage/ON current		18.5VDC or higher/3.5mA or higher	19 V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		3 VDC or lower/ 0.45 mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. $4.7 \mathrm{k} \Omega$	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	0.3 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 0.2 ms .
	ON to OFF	0.3 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: 1B1, 1B2, 2B1, 2B2)	32 points/common (common terminal: 1B01, 1B02, 2B01, 2B02)	\bigcirc	
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	
External interface		40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	used.
Number of occupied I/O points		64 (I/O assignment: Input 64 points)		\bigcirc	
Internal current consumption (5VDC)		160mA (TYP. all points ON)	180mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.28 kg	0.13 kg	-	

*1 Check the specifications of sensors and switches connected to the RX42C4.
*2 The following figure shows a derating chart.

A1SX42-S1

RX42C4

A: Input voltage 24VDC

- : Input voltage 26.4 VDC
- Input voltage 28.8 V
X : Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
Y: Number of simultaneous on points (point)
*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX42-S2 and RX42C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX42-S2	RX42C4		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		64		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{*}{ }^{1}$
Rated input current		Approx. 5mA	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{*}{ }^{*}$
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}{ }^{2}$		\triangle	Use the module within the range shown in the derating chart.
ON voltage/ON current		17.5VDC or higher/3.5mA or higher	19V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		7VDC or lower/1.7mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. $4.7 \mathrm{k} \Omega$	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: 1B1, 1B2, 2B1, 2B2)	32 points/common (common terminal: 1B01, 1B02, 2B01, 2B02)	\bigcirc	
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	
External interface		40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	used.
Number of occupied I/O points		64 (I/O assignment: Input 64 points)		\bigcirc	
Internal current consumption (5VDC)		90mA (TYP. all points ON)	180mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.28 kg	0.13 kg	-	

*1 Check the specifications of sensors and switches connected to the RX42C4.
*2 The following figure shows a derating chart.

A1SX42-S2

RX42C4

A: Input voltage 24 VDC

- : Input voltage 26.4 VDC
- Input voltage 28.8 V
X : Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
Y: Number of simultaneous on points (point)
*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX71 (when 24VDC is used) and RX41C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX71	RX41C4		
Input type		DC input (positive common/negative common shared type)		\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		5/12/24VDC (+10/-10\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		Approx. 1.2mA (5VDC) Approx. 3.3mA (12VDC) Approx. 7mA (24VDC)	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}$		\bigcirc	
ON voltage/ON current		3.5 VDC or higher/1mA or higher	19 V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*}{ }^{1}$
OFF voltage/OFF current		1VDC or lower/0.1mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{*}{ }^{1}$
Input resistance		Approx. $3.5 \mathrm{k} \Omega$	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	1.5 ms or less	Configured in the parameter.*3	\bigcirc	Set the input response time of parameters to 1 ms .
	ON to OFF	3 ms or less	Configured in the parameter.* ${ }^{*}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: B1, B2)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		40-pin connector (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	used.
Number of occupied I/O points		32 (I/O assignment: Input 32 points)		\bigcirc	
Internal current consumption(5VDC)		75 mA (TYP. all points ON)	150mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.19 kg	0.11 kg	-	

*1 Check the specifications of sensors and switches connected to the RX41C4.
*2 The following figure shows a derating chart.

A1SX71

RX41C4

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX71 (when 5/12VDC is used) and RX71C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX71	RX71C4		
Input type		DC input (positive common/negative common shared type)		\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		5/12/24VDC (+10/-10\%, ripple ratio within 5\%)	5/12VDC (+20/-15\%, ripple ratio within 5%)	\bigcirc	
Rated input current		Approx. 1.2mA (5VDC) Approx. 3.3mA (12VDC) Approx. 7mA (24VDC)	1.7mA TYP. (at 5VDC) 4.8mA TYP. (at 12VDC)	\bigcirc	
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}$ 2	100\% (32 points)	\bigcirc	
ON voltage/ON current		3.5 VDC or higher/1mA or higher	3.5 V or higher/ 1 mA or higher	\bigcirc	
OFF voltage/OFF current		1VDC or lower/0.1mA or lower	1 V or lower/0.1mA or lower	\bigcirc	
Input resistance		Approx. $3.5 \mathrm{k} \Omega$	$2.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	1.5 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 1 ms .
	ON to OFF	3 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: B1, B2)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		40-pin connector (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be used.
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points		32 (I/O assignment: Input 32 points)		\bigcirc	
Internal current consumption (5VDC)		75 mA (TYP. all points ON)	140mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.19 kg	0.12 kg	-	

*1 Check the specifications of sensors and switches connected to the RX71C4.
*2 The following figure shows a derating chart.
A1SX71

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.21 ms	0.3 ms	0.5 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX80 (when 24VDC is used) and RX40C7

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX80	RX40C7		
Input type		DC input (positive common/negative common shared type)		\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		$\begin{aligned} & 3 \mathrm{~mA}(12 \mathrm{VDC}) \\ & 7 \mathrm{~mA}(24 \mathrm{VDC}) \end{aligned}$	7mA TYP. (at 24VDC)	\bigcirc	
Maximum number of simultaneous input points		100\% (16 points)	100\% (16 points)	\bigcirc	
ON voltage/ON current		8VDC or higher/2mA or higher	15 V or higher/4mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		4VDC or lower/1mA or lower	8 V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k ${ }^{\text {a }}$	$3.3 \mathrm{k} \Omega$	\bigcirc	
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTX40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)		\bigcirc	
Internal current consumption (5VDC)		50mA (TYP. all points ON)	110 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

*1 Check the specifications of sensors and switches connected to the RX40C7.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX80 (when 12VDC is used) and RX70C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX80	RX70C4		
Input type		DC input (positive common/negative common shared type)		\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5\%)	5/12VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		$\begin{aligned} & 3 \mathrm{~mA} \text { (12VDC) } \\ & 7 \mathrm{~mA}(24 \mathrm{VDC}) \end{aligned}$	1.7 mA TYP. (at 5VDC) 4.8mA TYP. (at 12VDC)	\bigcirc	
Maximum number of simultaneous input points		100\% (16 points)	100\% (16 points)	\bigcirc	
ON voltage/ON current		8VDC or higher/2mA or higher	3.5 V or higher/ 1 mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*}$
OFF voltage/OFF current		4VDC or lower/1mA or lower	1 V or lower/0.1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k Ω	$2.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTX40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)		\bigcirc	
Internal current consumption (5VDC)		50 mA (TYP. all points ON)	100mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8(\mathrm{~W}) \times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

*1 Check the specifications of sensors and switches connected to the RX70C4.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.2 ms	0.3 ms	0.4 ms	0.5 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.41 ms	0.5 ms	0.6 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX80-S1 and RX40C7

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX80-S1	RX40C7		
Input type		DC input (positive common/negative common shared type)		\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{* 1}$
Rated input current		7 mA	7mA TYP. (at 24VDC)	\bigcirc	
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}$	100\% (16 points)	\bigcirc	
ON voltage/ON current		17VDC or higher/5mA or higher	15 V or higher/4mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		5VDC or lower/1.7mA or lower	8 V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k	$3.3 \mathrm{k} \Omega$	\bigcirc	
Response time	OFF to ON	0.4 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 0.4 ms .
	ON to OFF	0.4 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTX40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}$ 4
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)		\bigcirc	
Internal current consumption (5VDC)		50mA (TYP. all points ON)	110mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

*1 Check the specifications of sensors and switches connected to the RX40C7.
*2 The following figure shows a derating chart.

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX80-S2 and RX40C7

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX80-S2	RX40C7		
Input type		DC input (positive common/negative common shared type)		\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{*}{ }^{1}$
Rated input current		Approx. 7 mA	7mA TYP. (at 24VDC)	\bigcirc	
Maximum number of simultaneous input points		100\% (16 points)	100\% (16 points)	\bigcirc	
ON voltage/ON current		13VDC or higher/3.5mA or higher	15 V or higher/ 4 mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*} 1$
OFF voltage/OFF current		6VDC or lower/1.7mA or lower	8 V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k	$3.3 \mathrm{k} \Omega$	\bigcirc	
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTX40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 (I/O assignment: Input 16 points)		\bigcirc	
Internal current consumption (5VDC)		50mA (TYP. all points ON)	110mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

*1 Check the specifications of sensors and switches connected to the RX40C7.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70ms

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX81 (when 24VDC is used) and RX41C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX81	RX41C4		
Input type		DC input (positive common/negative common shared type)		\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		Approx. 3mA (12VDC) Approx. 7mA (24VDC)	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}{ }^{2}$		\bigcirc	
ON voltage/ON current		8VDC or higher/2mA or higher	19V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*} 1$
OFF voltage/OFF current		4VDC or lower/1mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage is changed after replacement. ${ }^{*}$
Input resistance		Approx. 3.3k Ω	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: 17, 18, 36)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		37-pin D-sub connector (A6CON1E/2E/3E)	40-pin connector (A6CON1/2/3/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASLCXY81), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*} 4$
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points		32 (I/O assignment: Input 32 points)		\bigcirc	
Internal current consumption(5VDC)		80mA (TYP. all points ON)	150mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8(\mathrm{~W}) \times 110$ (D) mm	-	
Weight		0.24 kg	0.11 kg	-	

*1 Check the specifications of sensors and switches connected to the RX41C4.
*2 The following figure shows a derating chart. A1SX81

RX41C4

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX81 (when 12VDC is used) and RX71C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX81	RX71C4		
Input type		DC input (negative common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5\%)	5/12VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		Approx. 3mA (12VDC) Approx. 7mA (24VDC)	1.7 mA TYP. (at 5VDC) 4.8mA TYP. (at 12VDC)	\bigcirc	
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}{ }^{2}$	100\% (32 points)	\bigcirc	
ON voltage/ON current		8VDC or higher/2mA or higher	3.5 V or higher/ 1 mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*}{ }^{1}$
OFF voltage/OFF current		4VDC or lower/1mA or lower	1 V or lower/ 0.1 mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k Ω	$2.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: 17, 18, 36)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		37-pin D-sub connector (A6CON1E/2E/3E)	40-pin connector (A6CON1/2/3/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASLCXY81), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*} 4$
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points		32 (//O assignment: Input 32 points)		\bigcirc	
Internal current consumption (5VDC)		80mA (TYP. all points ON)	140 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.24 kg	0.12 kg	-	

*1 Check the specifications of sensors and switches connected to the RX71C4.
*2 The following figure shows a derating chart.

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.21 ms	0.3 ms	0.5 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX81-S2 and RX41C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX81-S2	RX41C4		
Input type		DC input (positive common/negative common shared type)		\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{*}{ }^{1}$
Rated input current		Approx. 7 mA	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		Refer to the derating chart. ${ }^{*}$ 2		\bigcirc	
ON voltage/ON current		13 VDC or higher/3.5mA or higher	19V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		6VDC or lower/1.7mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: 17, 18, 36)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		37-pin D-sub connector (A6CON1E/2E/3E)	40-pin connector (A6CON1/2/3/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASLCXY81), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*} 4$
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points		32 (I/O assignment: Input 32 points)		\bigcirc	
Internal current consumption (5VDC)		80mA (TYP. all points ON)	150mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.24 kg	0.11 kg	-	

*1 Check the specifications of sensors and switches connected to the RX41C4.
*2 The following figure shows a derating chart.
A1SX81-S2
RX41C4

*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SX82-S1 and RX42C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX82-S1	RX42C4		
Input type		DC input (positive common/negative common shared type)		\bigcirc	
Number of input points		64		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{*}$
Rated input current		Approx. 5mA	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		50\% (16 points/common) (at 24VDC)	Refer to the derating chart. ${ }^{*}{ }^{2}$	\triangle	Use the module within the range shown in the derating chart.
ON voltage/ON current		18.5VDC or higher/3.5mA or higher	19 V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		3 VDC or lower/ 0.45 mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. $4.7 \mathrm{k} \Omega$	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	0.3 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 0.2 ms .
	ON to OFF	0.3 ms or less	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: 1B1, 1B2, 2B1, 2B2)	32 points/common (common terminal: 1B01, 1B02, 2B01, 2B02)	\bigcirc	
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	
External interface		40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	used.
Number of occupied I/O points		64 (I/O assignment: Input 64 points)		\bigcirc	
Internal current consumption (5VDC)		160mA (TYP. all points ON)	180mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.28 kg	0.13 kg	-	

*1 Check the specifications of sensors and switches connected to the RX42C4.
*2 The following figure shows a derating chart.

A: Input voltage 24VDC

- Input voltage 26.4 VDC

■: Input voltage 28.8 VDC
X : Ambient temperature (${ }^{\circ} \mathrm{C}$)
Y : Number of simultaneous on points (point)
*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

Output modules

A1SY10 and RY10R2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY10	RY10R2		
Output type		Contact output		\bigcirc	
Number of output points		16		\bigcirc	
Isolation method		Photocoupler	Relay	\triangle	Each isolation method has the same isolation performance although the method is changed after replacement.
Rated switching voltage, current		2 A at $24 \mathrm{VDC}($ resistive load)/point, 2 A at $240 \mathrm{VAC}(\operatorname{COS} \theta=1) /$ point, $8 \mathrm{~A} /$ common		\bigcirc	
Minimum switching load		1 mA at 5VDC		\bigcirc	
Maximum switching load		264VAC, 125VDC		\bigcirc	
Response time	OFF to ON	10 ms or less		\bigcirc	
	ON to OFF	12 ms or less		\bigcirc	
Life		Refer to the life table. ${ }^{* 1}$		\bigcirc	
Maximum switching frequency		3600 times/hour		\bigcirc	
Surge suppressor		None		\bigcirc	
Fuse		None		\bigcirc	
External power supply	Voltage	$24 \mathrm{VDC} \pm 10 \%$ (ripple voltage 4Vp-p or lower)	-	\bigcirc	No external power supply is required.
	Current	90 mA (TYP. 24VDC, all points ON)	-	\bigcirc	
Common terminal arrangement		8 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\triangle	As the common changes from two commons to a common, wiring with a different voltage for each common is not possible.
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTXY10), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}$ 2
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (I/O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		120 mA (TYP. all points ON)	450mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.25 kg	0.22 kg	-	

*1 The following tables show the life data.
A1SY10

Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at 240 VAC $(\operatorname{COS} \phi=0.7) 100$ thousand times or more 1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at 240 VAC $(\operatorname{COS} \phi=0.35) 100$ thousand times or more 1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at 100 VDC (L/R = 7ms) 100 thousand times or more
RY10R2	
Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 100$ thousand times or more 0.4 A at $200 \mathrm{VAC}, 0.3 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 300$ thousand times or more
	1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 100$ thousand times or more 0.3 A at $200 \mathrm{VAC}, 0.15 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 300$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 100$ thousand times or more 0.3 A at $24 \mathrm{VDC}, 0.03 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 300$ thousand times or more

[^1]
A1SY10EU and RY10R2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY10EU	RY10R2		
Output type		Contact output		\bigcirc	
Number of output points		16		\bigcirc	
Isolation method		Photocoupler	Relay	\triangle	Each isolation method has the same isolation performance although the method is changed after replacement.
Rated switching voltage, current		2A at 24VDC (resistive load)/point, 120VAC, 2A (COS $\theta=1$)/point, $8 \mathrm{~A} /$ common	2 A at 24 VDC (resistive load)/point, 240VAC, 2A (COS $\theta=1$)/point, $8 \mathrm{~A} /$ common	\bigcirc	
Minimum switching load		1 mA at 5VDC		\bigcirc	
Maximum switching load		132VAC, 125VDC	264VAC, 125VDC	\bigcirc	
Response time	OFF to ON	10 ms or less		\bigcirc	
	ON to OFF	12 ms or less		\bigcirc	
Life		Refer to the life table.*1		\triangle	The electrical life is half after replacement.
Maximum switching frequency		3600 times/hour		\bigcirc	
Surge suppressor		None		\bigcirc	
Fuse		None		\bigcirc	
External power supply	Voltage	$24 \mathrm{VDC} \pm 10 \%$ (ripple voltage 4Vp-p or lower)	-	\bigcirc	No external power supply is required.
	Current	90mA (TYP. 24VDC, all points ON)	-	\bigcirc	
Withstand voltage		(Between AC external batch and relay drive power supply, 5 V internal circuit) 1780VAC rms/3 cycles (altitude 2000m) (Relay-drive power supply, 5V internal circuit) 500VAC rms/3 cycles (Altitude 2000m)	2300VAC rms for 1 minute	\bigcirc	
Isolation resistance		$10 \mathrm{M} \Omega$ or more by insulation resistance tester		\bigcirc	
Noise immunity		IEC 801-4: 1 kV	By noise simulator of 1500 Vp -p noise voltage, $1 \mu \mathrm{~s}$ noise width and 25 to 60 Hz noise frequency	\bigcirc	
Common terminal arrangement		8 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\triangle	As the common changes from two commons to a common, wiring with a different voltage for each common is not possible.
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTXY10), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}{ }^{2}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$ (16 to 19 AWG)	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		RAV1.25-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (1/O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		120 mA (TYP. all points ON)	450mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.25 kg	0.22 kg	-	

*1 The following tables show the life data.
A1SY10EU

Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 200 thousand times or more
	2 A at $100 \mathrm{VAC}, 2 \mathrm{~A}$ at 120 VAC $(\operatorname{COS} \phi=0.7) 200$ thousand times or more 2 A at $100 \mathrm{VAC}, 2 \mathrm{~A}$ at 120 VAC $(\operatorname{COS} \phi=0.35) 100$ thousand times or more 1.5 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at 100 VDC (L/R = 7ms) 100 thousand times or more
RY10R2	
Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 100$ thousand times or more 0.4 A at $200 \mathrm{VAC}, 0.3 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 300$ thousand times or more
	1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 100$ thousand times or more 0.3 A at $200 \mathrm{VAC}, 0.15 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 300$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 100$ thousand times or more 0.3 A at $24 \mathrm{VDC}, 0.03 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 300$ thousand times or more

[^2]
A1SY14EU and RY10R2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY14EU	RY10R2		
Output type		Contact output		\bigcirc	
Number of output points		12	16	\bigcirc	
Isolation method		Photocoupler	Relay	\triangle	Each isolation method has the same isolation performance although the method is changed after replacement.
Rated switching voltage, current		2 A at 24 VDC (resistive load)/point, 2 A at $240 \mathrm{VAC}(\operatorname{COS} \theta=1) /$ point, $8 \mathrm{~A} /$ common		\bigcirc	
Minimum switching load		1 mA at 5VDC		\bigcirc	
Maximum switching load		264VAC, 125VDC		\bigcirc	
Response time	OFF to ON	10 ms or less		\bigcirc	
	ON to OFF	12 ms or less		\bigcirc	
Life		Refer to the life table.*1		\triangle	The electrical life is half after replacement.
Maximum switching frequency		3600 times/hour		\bigcirc	
Surge suppressor		None		\bigcirc	
Fuse		None		\bigcirc	
External power supply	Voltage	$24 \mathrm{VDC} \pm 10 \%$ (ripple voltage 4Vp-p or lower)	-	\bigcirc	No external power supply is required.
	Current	100mA (TYP. 24VDC, all points ON) SELV power supply	-	\bigcirc	
Withstand voltage		(Between AC external batch and relay drive power supply, 5 V internal circuit) 2830VAC rms/3 cycles (altitude 2000m) (Relay-drive power supply, 5V internal circuit) 500 VAC rms $/ 3$ cycles (Altitude 2000m)	2300VAC rms for 1 minute	\bigcirc	
Isolation resistance		$10 \mathrm{M} \Omega$ or more by insulation resistance tester		\bigcirc	
Noise immunity		IEC 801-4: 1kV	By noise simulator of 1500 Vp -p noise voltage, $1 \mu \mathrm{~s}$ noise width and 25 to 60 Hz noise frequency	\bigcirc	
Common terminal arrangement		4 points/common (common terminal: TB5, TB10, TB15)	16 points/common (common terminal: TB17)	\triangle	As the common changes from three commons to a common, wiring with a different voltage for each common is not possible.
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement.
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$ (16 to 19 AWG)	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		RAV1.25-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (//O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		120 mA (TYP. all points ON)	450mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.25 kg	0.22 kg	-	

*1 The following tables show the life data.
A1SY14EU

Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 200 thousand times or more
	2 A at $200 \mathrm{VAC}, 1.8 \mathrm{~A}$ at 240 VAC $(\operatorname{COS} \phi=0.7) 200$ thousand times or more 1.1 A at $200 \mathrm{VAC}, 0.9 \mathrm{~A}$ at 240 VAC $(\operatorname{COS} \phi=0.35) 200$ thousand times or more 1.1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at 100 VDC (L/R = 7ms) 200 thousand times or more
RY10R2	
Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 100$ thousand times or more 0.4 A at 200VAC, 0.3 A at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 300$ thousand times or more
	1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 100$ thousand times or more 0.3 A at $200 \mathrm{VAC}, 0.15 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 300$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 100$ thousand times or more 0.3 A at $24 \mathrm{VDC}, 0.03 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 300$ thousand times or more

A1SY18A and RY18R2A

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY18A	RY18R2A		
Output type		Contact output		\bigcirc	
Number of output points		8		\bigcirc	
Isolation method		Photocoupler	Relay	\triangle	Each isolation method has the same isolation performance although the method is changed after replacement.
Rated switching voltage, current		2 A at 24 VDC (resistive load)/point, 2 A at $240 \mathrm{VAC}(\operatorname{COS} \theta=1) /$ point, $8 \mathrm{~A} /$ module		\bigcirc	
Minimum switching load		1 mA at 5VDC		\bigcirc	
Maximum switching load		264VAC, 125VDC		\bigcirc	
Response time	OFF to ON	10 ms or less		\bigcirc	
	ON to OFF	12 ms or less		\bigcirc	
Life		Refer to the life table. ${ }^{* 1}$		\triangle	The electrical life is half after replacement.
Maximum switching frequency		3600 times/hour		\bigcirc	
Surge suppressor		None		\bigcirc	
Fuse		None		\bigcirc	
External power supply	Voltage	$24 \mathrm{VDC} \pm 10 \%$ (ripple voltage $4 \mathrm{Vp}-\mathrm{p}$ or lower)	-	\bigcirc	No external power supply is required.
	Current	75mA (TYP. 24VDC, all points ON)	-	\bigcirc	
Common terminal arrangement		No common (all points independent)		\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement.
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (1/O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		240mA (TYP. all points ON)	260mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.25 kg	0.19 kg	-	

*1 The following tables show the life data.
A1SY18A

Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 200 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at 240 VAC $(\operatorname{COS} \phi=0.7) 200$ thousand times or more 0.75 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at 240 VAC $(\operatorname{COS} \phi=0.35) 200$ thousand times or more 1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 200$ thousand times or more
RY18R2A	
Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 100$ thousand times or more 0.4 A at $200 \mathrm{VAC}, 0.3 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 300$ thousand times or more
	1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 100$ thousand times or more 0.3 A at $200 \mathrm{VAC}, 0.15 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 300$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 100$ thousand times or more 0.3 A at $24 \mathrm{VDC}, 0.03 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 300$ thousand times or more

A1SY18AEU and RY18R2A

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY18AEU	RY18R2A		
Output type		Contact output		\bigcirc	
Number of output points		8		\bigcirc	
Isolation method		Photocoupler	Relay	\triangle	Each isolation method has the same isolation performance although the method is changed after replacement.
Rated switching voltage, current		2 A at 24 VDC (resistive load)/point, 2 A at $240 \mathrm{VAC}(\operatorname{COS} \theta=1) /$ point, $8 \mathrm{~A} /$ module		\bigcirc	
Minimum switching load		1 mA at 5VDC		\bigcirc	
Maximum switching load		264VAC, 125VDC		\bigcirc	
Response time	OFF to ON	10 ms or less		\bigcirc	
	ON to OFF	12 ms or less		\bigcirc	
Life		Refer to the life table. ${ }^{* 1}$		\triangle	The electrical life is half after replacement.
Maximum switching frequency		3600 times/hour		\bigcirc	
Surge suppressor		None		\bigcirc	
Fuse		None		\bigcirc	
External power supply	Voltage	$24 \mathrm{VDC} \pm 10 \%$ (ripple voltage 4Vp-p or lower)	-	\bigcirc	No external power supply is required.
	Current	75 mA (TYP. 24VDC, all points ON)	-	\bigcirc	
Withstand voltage		(Between AC external batch and relay drive power supply, 5 V internal circuit) 2830 VAC rms/3 cycles (altitude 2000m) (Relay-drive power supply, 5V internal circuit) 500VAC rms/3 cycles (Altitude 2000m)	2300VAC rms for 1 minute	\bigcirc	
Isolation resistance		$10 \mathrm{M} \Omega$ or more by insulation resistance tester		\bigcirc	
Noise immunity		IEC 801-4: 1 kV	By noise simulator of 1500 Vp -p noise voltage, $1 \mu \mathrm{~s}$ noise width and 25 to 60 Hz noise frequency	\bigcirc	
Common terminal arrangement		No common (all points independent)		\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement.
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$ (16 to 19 AWG)	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		RAV1.25-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (//O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		240 mA (TYP. all points ON)	260mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.25 kg	0.19 kg	-	

*1 The following tables show the life data.
A1SY18A

Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 200 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at 240 VAC $(\operatorname{COS} \phi=0.7) 200$ thousand times or more 0.75 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at 240 VAC $(\operatorname{COS} \phi=0.35) 200$ thousand times or more 1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 200$ thousand times or more
RY18R2A	
Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 100$ thousand times or more 0.4 A at $200 \mathrm{VAC}, 0.3 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 300$ thousand times or more
	1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 100$ thousand times or more 0.3 A at $200 \mathrm{VAC}, 0.15 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 300$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 100$ thousand times or more 0.3 A at $24 \mathrm{VDC}, 0.03 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 300$ thousand times or more

A1SY22 and RY20S6

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY22	RY20S6		
Output type		Triac output		\bigcirc	
Number of output points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage, frequency		100/240VAC, $50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$	$\begin{aligned} & 100 \text { to } 240 \mathrm{VAC}(+10 \% /-15 \%), 50 / \\ & 60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz}) \end{aligned}$	\bigcirc	
Maximum load voltage		264VAC		\bigcirc	
Maximum load current		0.6A/point, 2.4A/common	0.6A/point, 4.8A/common	\bigcirc	
Minimum load voltage/ current		100 mA at $24 \mathrm{VAC}, 10 \mathrm{~mA}$ at $100 \mathrm{VAC}, 20 \mathrm{~mA}$ at 240 VAC	100 mA at $24 \mathrm{VAC}, 25 \mathrm{~mA}$ at $100 \mathrm{VAC}, 25 \mathrm{~mA}$ at 240 VAC	\triangle	The minimum load current is increased after replacement. ${ }^{*}$
Maximum inrush current		20A 10ms or less, 8A 100ms or less	20A/cycle or lower	\triangle	The maximum inrush current is decreased after replacement. ${ }^{* 1}$
Leakage current at OFF		1.5 mA or lower ($120 \mathrm{VAC}, 60 \mathrm{~Hz}$), 3 mA or lower (240VAC, 60Hz)	1.5 mA or lower (at $120 \mathrm{~V}, 60 \mathrm{~Hz}$), 3 mA or lower (at $240 \mathrm{~V}, 60 \mathrm{~Hz}$)	\bigcirc	
Maximum voltage drop at ON		1.5 VAC or lower (0.1 to 0.6 A) 1.8 VAC or lower (50 to 100 mA) 2 VAC or lower (10 to 50 mA)	1.5 V or lower	\bigcirc	
Response time	OFF to ON	1 ms or less	Total of 1 ms and 0.5 cycles or less	\bigcirc	
	ON to OFF	Total of 1 ms and 0.5 cycles or less	Total of 1 ms and 0.5 cycles or less (rated load, resistive load)	\bigcirc	
Surge suppressor		CR absorber ($0.01 \mu \mathrm{~F}+47 \Omega$)	CR absorber	\bigcirc	
Fuse		5A (1 fuse/common), not replaceable (Breaking capacity: 70A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
Common terminal arrangement		8 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\triangle	As the common changes from two commons to a common, wiring with a different voltage for each common is not possible.
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTY22), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (//O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		270mA (TYP. all points ON)	280mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	106(H)×27.8(W) $\times 131$ (D) mm	-	
Weight		0.24 kg	0.24 kg	-	

*1 Check the specifications of loads connected to the RY20S6.
*2 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SY40 and RY40NT5P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY40	RY40NT5P		
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, $0.8 \mathrm{~A} /$ common	0.5A/point, 5A/common	\bigcirc	
Maximum inrush current		$0.4 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 1.0 VDC (TYP.), 0.1 A at 2.5VDC (MAX.)	0.5 A at 0.2 VDC (TYP.), 0.5 A at 0.3VDC (MAX.)	\bigcirc	
Response time	OFF to ON	2 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
Fuse		1.6A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	8 mA (TYP. 24VDC/common)	4 mA (at 24VDC)	\bigcirc	
Common terminal arrangement		8 points/common (common terminal: TB10, TB20)	16 points/common (common terminal: TB18)	\triangle	As the common changes from two commons to a common, wiring with a different voltage for each common is not possible.
Operation indication		ON indication (LED)		\bigcirc	
Protection function		None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTY40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}{ }^{2}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (1/O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		270mA (TYP. all points ON)	140mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.19 kg	0.16 kg	-	

A1SY40P and RY40NT5P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY40P	RY40NT5P		
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, $0.8 \mathrm{~A} /$ common	0.5A/point, 5A/common	\bigcirc	
Maximum inrush current		$0.7 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 0.1 VDC (TYP.), 0.1 A at 0.2 VDC (MAX.)	0.5 A at 0.2 VDC (TYP.), 0.5 A at 0.3 VDC (MAX.)	\bigcirc	
Response time	OFF to ON	1 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	1 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	11 mA (TYP. 24VDC/common)	4 mA (at 24VDC)	\bigcirc	
Common terminal arrangement		8 points/common (common terminal: TB10, TB20)	16 points/common (common terminal: TB18)	\triangle	As the common changes from two commons to a common, wiring with a different voltage for each common is not possible.
Operation indication		ON indication (LED)		\bigcirc	
Protection function		Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTY40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}{ }^{2}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (I/O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		79mA (TYP. all points ON)	140 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.13 kg	0.16 kg	-	

A1SY41 and RY41NT2P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY41	RY41NT2P		
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, 2A/common	0.2A/point, 2A/common	\bigcirc	
Maximum inrush current		$0.4 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 1.0 VDC (TYP.), 0.1 A at 2.5VDC (MAX.)	$\begin{aligned} & 0.2 \mathrm{~A} \text { at } 0.2 \mathrm{VDC} \text { (TYP.), } 0.2 \mathrm{~A} \text { at } \\ & 0.3 \mathrm{VDC} \text { (MAX.) } \end{aligned}$	\bigcirc	
Response time	OFF to ON	2 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
Fuse		3.2A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	8mA (TYP. 24VDC/common)	16 mA (at 24VDC)	\triangle	The current value is increased after replacement.
Common terminal arrangement		32 points/common (common terminal: A1, A2)	32 points/common (common terminal: A01, A02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
Protection function		None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	
External interface		40-pin connector (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be used.
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points		32 points (//O assignment: Output 32 points)		\bigcirc	
Internal current consumption(5VDC)		500mA (TYP. all points ON)	180mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.21 kg	0.11 kg	-	

*1 Check the specifications of loads connected to the RY41NT2P.

A1SY41P and RY41NT2P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY41P	RY41NT2P		
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, 2A/common	0.2A/point, 2A/common	\bigcirc	
Maximum inrush current		$0.7 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 0.1 VDC (TYP.), 0.1 A at 0.2 VDC (MAX.)	0.2 A at 0.2 VDC (TYP.), 0.2 A at 0.3VDC (MAX.)	\bigcirc	
Response time	OFF to ON	1 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	1 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	12mA (TYP. 24VDC/common)	16 mA (at 24VDC)	\triangle	The current value is increased after replacement.
Common terminal arrangement		32 points/common (common terminal: A1, A2)	32 points/common (common terminal: A01, A02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
Protection function		Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)		\bigcirc	
External interface		40-pin connector (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		$0.088 \text { to } 0.3 \mathrm{~mm}^{2}$		\bigcirc	used.
Number of occupied I/O points		32 points (1/O assignment: Output 32 points)		\bigcirc	
Internal current consumption (5VDC)		141mA (TYP. all points ON)	180mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.15 kg	0.11 kg	-	

*1 Check the specifications of loads connected to the RY41NT2P.

A1SY42 and RY42NT2P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY42	RY42NT2P		
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		64		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, 1.6A/common	0.2A/point, 2A/common	\bigcirc	
Maximum inrush current		$0.4 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 1.0 VDC (TYP.), 0.1 A at 2.5VDC (MAX.)	0.2 A at 0.2 VDC (TYP.), 0.2 A at 0.3VDC (MAX.)	\bigcirc	
Response time	OFF to ON	2 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
Fuse		3.2A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	8mA (TYP. 24VDC/common)	16 mA (at 24VDC)/common	\triangle	The current value is increased after replacement.
Common terminal arrangement		32 points/common (common terminal: 1A1, 1A2, 2A1, 2A2)	32 points/common (common terminal: 1A01, 1A02, 2A01, 2A02)	\bigcirc	
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	
Protection function		None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	
External interface		40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be used.
Applicable wire size		$0.088 \text { to } 0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points		64 points (1/O assignment: Output 64 points)		\bigcirc	
Internal current consumption (5VDC)		930mA (TYP. all points ON)	250mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.27 kg	0.13 kg	-	

*1 Check the specifications of loads connected to the RY42NT2P.

A1SY42P and RY42NT2P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY42P	RY42NT2P		
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		64		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, 2A/common	0.2A/point, 2A/common	\bigcirc	
Maximum inrush current		$0.7 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 0.1 VDC (TYP.), 0.1 A at 0.2 VDC (MAX.)	0.2 A at 0.2 VDC (TYP.), 0.2 A at 0.3VDC (MAX.)	\bigcirc	
Response time	OFF to ON	1 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	1 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	14mA (TYP. 24VDC/common)	16 mA (at 24VDC)/common	\triangle	The current value is increased after replacement.
Common terminal arrangement		32 points/common (common terminal: 1A1, 1A2, 2A1, 2A2)	32 points/common (common terminal: 1A01, 1A02, 2A01, 2A02)	\bigcirc	
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	
Protection function		Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)		\bigcirc	
External interface		40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		$0.088 \text { to } 0.3 \mathrm{~mm}^{2}$		\bigcirc	used.
Number of occupied I/O points		64 points (1/O assignment: Output 64 points)		\bigcirc	
Internal current consumption (5VDC)		170mA (TYP. all points ON)	250mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.17 kg	0.13 kg	-	

*1 Check the specifications of loads connected to the RY42NT2P.

A1SY50 and RY40NT5P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY50	RY40NT5P		
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.5A/point, 2A/common	0.5A/point, 5A/common	\bigcirc	
Maximum inrush current		$4 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.5 A at 0.9 VDC (TYP.), 0.5 A at 1.5VDC (MAX.)	$\begin{aligned} & 0.5 \mathrm{~A} \text { at } 0.2 \mathrm{VDC} \text { (TYP.), } 0.5 \mathrm{~A} \text { at } \\ & 0.3 \mathrm{VDC} \text { (MAX.) } \end{aligned}$	\bigcirc	
Response time	OFF to ON	2 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
Fuse		3.2A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	60mA (TYP. 24VDC/common)	4 mA (at 24VDC)	\bigcirc	
Common terminal arrangement		8 points/common (common terminal: TB10, TB20)	16 points/common (common terminal: TB18)	\triangle	As the common changes from two commons to a common, wiring with a different voltage for each common is not possible.
Operation indication		ON indication (LED)		\bigcirc	
Protection function		None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTY50), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 2}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (1/O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		120 mA (TYP. all points ON)	140mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

A1SY60 and RY10R2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY60	RY10R2		
Output type		Transistor output (sink type)	Contact output	\times	The output type is changed after replacement. ${ }^{* 1}$
Number of output points		16		\bigcirc	
Isolation method		Photocoupler	Relay	\triangle	Each isolation method has the same isolation performance although the method is changed after replacement.
Rated load voltage		24VDC (+10\%/-10\%)	24VDC/240VAC (MAX. 125VDC/264VAC)	\bigcirc	
Maximum load current		2A/point, $4 \mathrm{~A} /$ common $\left(25^{\circ} \mathrm{C}\right)$, $1.8 \mathrm{~A} /$ point, $3.6 \mathrm{~A} /$ common $\left(45^{\circ} \mathrm{C}\right)$, $1.6 \mathrm{~A} /$ point, $3.2 \mathrm{~A} /$ common $\left(55^{\circ} \mathrm{C}\right)$	2A/point, 8A/common	\bigcirc	
Maximum inrush current		$8 \mathrm{~A}, 10 \mathrm{~ms}$ or less	-	-	
Leakage current at OFF		0.1 mA or lower	-	-	
Maximum voltage drop at ON		2A at 0.9VDC (TYP.), 0.5 A at 1.5 VDC (MAX.)	-	-	
Response time	OFF to ON	2 ms or less	10 ms or less	\triangle	The response time is changed after replacement. ${ }^{* 1}$
	ON to OFF	2 ms or less (resistive load)	12ms or less	\triangle	
Life		Unlimited electrical life	Refer to the life table.*2	\times	The electrical/mechanical life is limited because contact output is used.
Maximum switching frequency		Unlimited mechanical life	3600 times/hour		
Surge suppressor		Zener diode	None	\times	The surge suppressor is not built in this model.
Fuse		5A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	24VDC (+10\%/-10\%)	-	\bigcirc	No external power supply is required.
	Current	15 mA (TYP. 24VDC/common)	-	\bigcirc	
Common terminal arrangement		8 points/common (common terminal: TB10, TB20)	16 points/common (common terminal: TB17)	\triangle	As the common changes from two commons to a common, wiring with a different voltage for each common is not possible.
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement.
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (//O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		120 mA (TYP. all points ON)	450mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.25 kg	0.22 kg	-	

*1 Check the specifications of loads connected to the RY10R2.
*2 The following tables show the life data.

Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at 200VAC, 1 A at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 100$ thousand times or more
	0.4 A at $200 \mathrm{VAC}, 0.3 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 300$ thousand times or more
	1 A at 200VAC, 0.5 A at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 100$ thousand times or more
	0.3 A at $200 \mathrm{VAC}, 0.15 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 300$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 100$ thousand times or more
	0.3 A at $24 \mathrm{VDC}, 0.03 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 300$ thousand times or more

A1SY60E and RY10R2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY60E	RY10R2		
Output type		Transistor output (source type)	Contact output	\times	The output type is changed after replacement. ${ }^{* 1}$
Number of output points		16		\bigcirc	
Isolation method		Photocoupler	Relay	\triangle	Each isolation method has the same isolation performance although the method is changed after replacement.
Rated load voltage		5/12/24VDC (+10\%/-10\%)	24VDC/240VAC (MAX. 125VDC/264VAC)	\bigcirc	
Maximum load current		2A/point (condition: $\tau=\mathrm{L} / \mathrm{R} \leq 2.5 \mathrm{~ms}$), 4A/common	2A/point, 8A/common	\bigcirc	
Maximum inrush current		8A, 10ms or less	-	-	
Leakage current at OFF		0.1 mA or lower	-	-	
Maximum voltage drop at ON		1 A at 0.2VDC (TYP.), 2 A at 0.4 VDC (MAX.)	-	-	
Response time	OFF to ON	3 ms or less	10 ms or less	\triangle	The response time is changed after replacement. ${ }^{* 1}$
	ON to OFF	10 ms or less (resistive load)	12ms or less	\triangle	
Life		Unlimited electrical life	Refer to the life table.*2	\times	The electrical/mechanical life is limited because contact output is used.
Maximum switching frequency		Unlimited mechanical life	3600 times/hour		
Surge suppressor		Zener diode	None	\times	The surge suppressor is not built in this model.
Fuse		7A (1 fuse/common), not replaceable (Breaking capacity: 300A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	12/24VDC (+10\%/-15\%)	-	\bigcirc	No external power supply is required.
	Current	10 mA (TYP. 24VDC/common)	-	\bigcirc	
Common terminal arrangement		8 points/common (common terminal: TB9, TB19)	16 points/common (common terminal: TB17)	\triangle	As the common changes from two commons to a common, wiring with a different voltage for each common is not possible.
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement.
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (//O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		200mA (TYP. all points ON)	450mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.22 kg	-	

*1 Check the specifications of loads connected to the RY10R2.
*2 The following tables show the life data.

Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at 200VAC, 1 A at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 100$ thousand times or more 0.4 A at $200 \mathrm{VAC}, 0.3 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 300$ thousand times or more
	1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 100$ thousand times or more 0.3 A at 200VAC, 0.15 A at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 300$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 100$ thousand times or more 0.3 A at $24 \mathrm{VDC}, 0.03 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 300$ thousand times or more

A1SY68A and RY18R2A

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY68A	RY18R2A		
Output type		Transistor output (all points independent, sink/source type)	Contact output	\times	The output type is changed after replacement. ${ }^{* 1}$
Number of output points		8		\bigcirc	
Isolation method		Photocoupler	Relay	\triangle	Each isolation method has the same isolation performance although the method is changed after replacement.
Rated load voltage		5/12/24/48VDC (+10\%/-10\%)	24VDC/240VAC (MAX. 125VDC/264VAC)	\bigcirc	
Maximum load current		2A/point	2A/point, 8A/common	\bigcirc	
Maximum inrush current		$8 \mathrm{~A}, 10 \mathrm{~ms}$ or less	-	-	
Leakage current at OFF		0.1 mA or lower	-	-	
Maximum voltage drop at ON		2A at 0.4VDC (MAX.)	-	-	
Response time	OFF to ON	3 ms or less	10 ms or less	\triangle	The response time is changed after replacement. ${ }^{* 1}$
	ON to OFF	10 ms or less (resistive load)	12 ms or less	\triangle	
Life		Unlimited electrical life	Refer to the life table.*2	\times	The electrical/mechanical life is limited because contact output is used.
Maximum switching frequency		Unlimited mechanical life	3600 times/hour		
Surge suppressor		Zener diode	None	\times	The surge suppressor is not built in this model.
Common terminal arrangement		No common (all points independent)		\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement.
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (1/O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		110 mA (TYP. all points ON)	260mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.25 kg	0.19 kg	-	

*1 Check the specifications of loads connected to the RY18R2A.
*2 The following tables show the life data.

Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at 200VAC, 1 A at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 100$ thousand times or more 0.4 A at $200 \mathrm{VAC}, 0.3 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 300$ thousand times or more
	1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 100$ thousand times or more 0.3 A at $200 \mathrm{VAC}, 0.15 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 300$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 100$ thousand times or more 0.3 A at $24 \mathrm{VDC}, 0.03 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 300$ thousand times or more

A1SY71 and RY41NT2H

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY71	RY41NT2H		
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		5/12VDC (+25\%/-10\%)	5/12/24VDC (+20\%/-15\%)	\bigcirc	
Maximum load current		$16 \mathrm{~mA} /$ point, $256 \mathrm{~mA} /$ common	0.2A/point, 2A/common	\bigcirc	
Maximum inrush current		40 mA 10 ms	$0.7 \mathrm{~A}, 10 \mathrm{~ms}$ or less	\bigcirc	
Output voltage at OFF		$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}: 3.5 \mathrm{VDC} \\ & \left(\mathrm{~V}_{\mathrm{cc}}=5 \mathrm{VDC}, \mathrm{I}_{\mathrm{OH}}=0.4 \mathrm{~mA}\right) \end{aligned}$	-	\bigcirc	
Maximum voltage drop at ON		$\mathrm{V}_{\mathrm{OL}}: \mathrm{DC} 0.3 \mathrm{~V}$	0.2 A at 0.1 VDC (TYP.), 0.2 A at 0.2VDC (MAX.)	\bigcirc	
Response time	OFF to ON	1 ms or less	$1 \mu \mathrm{~s}$ or less	\bigcirc	
	ON to OFF	1 ms or less (resistive load)	$2 \mu \mathrm{~s}$ or less (rated load, resistive load)	\bigcirc	
Surge suppressor		None	Zener diode	\bigcirc	
Fuse		1.6A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	5/12VDC (+25\%/-10\%)	-	\bigcirc	No external power supply is required.
	Current	150 mA (TYP. 12VDC/common)	-	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: A1, A2)	32 points/common (common terminal: A01, A02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		40-pin connector (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be used.
Applicable wire size		$0.088 \text { to } 0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points		32 points (1/O assignment: Output 32 points)		\bigcirc	
Internal current consumption (5VDC)		400mA (TYP. all points ON)	420 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.19 kg	0.12 kg	-	

A1SY80 and RY40PT5P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY80	RY40PT5P		
Output type		Transistor output (source type)		\bigcirc	
Number of output points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.8A/point, 3.2A/common	0.5A/point, 5A/common	\triangle	The maximum load current is decreased after replacement. ${ }^{* 1}$
Maximum inrush current		8A, 10ms or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.8 A at 1.5VDC (MAX.)	0.5 A at 0.2 VDC (TYP.), 0.5 A at 0.3 VDC (MAX.)	\bigcirc	
Response time	OFF to ON	2ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
Fuse		5A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	20mA (TYP. 24VDC/common)	16 mA (at 24VDC)	\bigcirc	
Common terminal arrangement		8 points/common (common terminal: TB9, TB19)	16 points/common (common terminal: TB17)	\triangle	As the common changes from two commons to a common, wiring with a different voltage for each common is not possible.
Operation indication		ON indication (LED)		\bigcirc	
Protection function		None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTY80), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}$
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		16 points (1/O assignment: Output 16 points)		\bigcirc	
Internal current consumption (5VDC)		120 mA (TYP. all points ON)	130 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

A1SY81 and RY41PT1P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY81	RY41PT1P		
Output type		Transistor output (source type)		\bigcirc	
Number of output points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, 2A/common		\bigcirc	
Maximum inrush current		$0.4 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 1.0 VDC (TYP.), 0.1 A at 2.5 VDC (MAX.)	0.1 A at 0.1 VDC (TYP.), 0.1 A at 0.2 VDC (MAX.)	\bigcirc	
Response time	OFF to ON	2 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
Fuse		3.2A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	8mA (TYP. 24VDC/common)	19 mA (at 24VDC)	\triangle	The current value is increased after replacement.
Common terminal arrangement		32 points/common (common terminal: 17, 18, 36)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
Protection function		None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	
External interface		$\begin{aligned} & \text { 37-pin D-sub connector (A6CON1E/ } \\ & 2 \mathrm{E} / 3 \mathrm{E}) \end{aligned}$	40-pin connector (A6CON1/2/3/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASLCXY81), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}{ }^{2}$
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\times	
Number of occupied I/O points		32 points (I/O assignment: Output 32 points)		\bigcirc	
Internal current consumption (5VDC)		500mA (TYP. all points ON)	190mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.23 kg	0.11 kg	-	

*1 Check the specifications of loads connected to the RY41PT1P.
*2 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SY81EP and RY41PT1P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY81EP	RY41PT1P		
Output type		Transistor output (source type)		\bigcirc	
Number of output points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (+10\%/-15\%)	12/24VDC (+20\%/-15\%)	\bigcirc	
Maximum load current		$0.1 \mathrm{~A} /$ point, $2 \mathrm{~A} /$ common $\left(25^{\circ} \mathrm{C}\right)$, $0.05 \mathrm{~A} /$ point, $1.6 \mathrm{~A} /$ common $\left(55^{\circ} \mathrm{C}\right)$	0.1A/point, 2A/common	\bigcirc	
Maximum inrush current		No limit (short circuit protection function)	Current is to be limited by the overload protection function.	\bigcirc	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 2.5 VDC (MIN.), 0.1 A at 3.5VDC (MAX.)	0.1 A at 0.1 VDC (TYP.), 0.1 A at 0.2 VDC (MAX.)	\bigcirc	
Response time	OFF to ON	0.5 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	1.5 ms or less (resistive load)	1ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Clamp diode	Zener diode	\bigcirc	
External power supply	Voltage	12/24VDC (+10\%/-15\%)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\bigcirc	
	Current	80 mA (TYP. 24VDC/common)	19 mA (at 24VDC)	\bigcirc	
Common terminal arrangement		32 points/common (common terminal: 17, 18, 36)	32 points/common (common terminal: B01, B02)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
Protection function		Overheat protection function (in increments of 8 point), overload protection function	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	
External interface		37-pin D-sub connector (A6CON1E/ 2E/3E)	40-pin connector (A6CON1/2/3/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASLCXY81), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}{ }^{2}$
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\times	
Number of occupied I/O points		32 points (I/O assignment: Output 32 points)		\bigcirc	
Internal current consumption (5VDC)		500mA (TYP. all points ON)	190mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.25 kg	0.11 kg	-	

*1 Check the specifications of loads connected to the RY41PT1P.
*2 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SY82 and RY42PT1P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SY82	RY42PT1P		
Output type		Transistor output (source type)		\bigcirc	
Number of output points		64		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, 1.6A/common	0.1A/point, 2A/common	\bigcirc	
Maximum inrush current		$0.4 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\bigcirc	
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 1.0 VDC (TYP.), 0.1 A at 2.5VDC (MAX.)	0.1 A at 0.1 VDC (TYP.), 0.1 A at 0.2 VDC (MAX.)	\bigcirc	
Response time	OFF to ON	2 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
Fuse		3.2A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	8 mA (TYP. 24VDC/common)	19 mA (at 24VDC)	\triangle	The current value is increased after replacement.
Common terminal arrangement		32 points/common (common terminal: 1B1, 1B2, 2B1, 2B2)	32 points/common (common terminal: 1B01, 1B02, 2B01, 2B02)	\bigcirc	
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	
Protection function		None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	
External interface		40-pin connector (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be used.
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points		64 points (I/O assignment: Output 64 points)		\bigcirc	
Internal current consumption (5VDC)		930mA (TYP. all points ON)	290mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.27 kg	0.13 kg	-	

*1 Check the specifications of loads connected to the RY42PT1P.

I/O combined modules

A1SH42 and RH42C4NT2P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SH42	RH42C4NT2P		
\square Input specifications					
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	12VDC voltage cannot be used after replacement. ${ }^{* 1}$
Rated input current		Approx. 2mA (12VDC) Approx. 5mA (24VDC)	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{*} 1$
Maximum number of simultaneous input points		60\% (20 points/common) (at 24VDC)	Refer to the derating chart. ${ }^{*}$ 2	\triangle	Use the module within the range shown in the derating chart.
ON voltage/ON current		8VDC or higher/2mA or higher	19V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		4VDC or lower/0.6mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{*}{ }^{1}$
Input resistance		Approx. $5 \mathrm{k} \Omega$	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Input common terminal arrangement		32 points/common (common terminal: 1B1, 1B2)	32 points/common (common terminal: 1B01, 1B02)	\bigcirc	

Output type		Transistor output (sink type)		\bigcirc	
Number of output points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, 1.6A/common	0.2A/point, 2A/common	\bigcirc	
Maximum inrush current		$0.4 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 1.0 VDC (TYP.), 0.1 A at 2.5VDC (MAX.)	$\begin{aligned} & 0.2 \mathrm{~A} \text { at } 0.2 \mathrm{VDC} \text { (TYP.), } 0.2 \mathrm{~A} \text { at } \\ & 0.3 \mathrm{VDC} \text { (MAX.) } \end{aligned}$	\bigcirc	
Response time	OFF to ON	2 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
Fuse		3.2A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	

Item		Specifications		Compatibility	Precautions
		A1SH42	RH42C4NT2P		
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	8mA (TYP. 24VDC/common)	16 mA (at 24VDC)	\triangle	The current value is increased after replacement.
Output common terminal arrangement		32 points/common (common terminal: 2A1, 2A2)	32 points/common (common terminal: 2A01, 2A02)	\bigcirc	
Protection function		None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	
- Common specifications					
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	
External interface		40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	used.
Number of occupied I/O points		32 points (I/O assignment: Output 32 points)	32 points (I/O assignment: I/O combined 32 points)	\bigcirc	
Internal current consumption (5VDC)		500 mA (TYP. all points ON)	220 mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.27 kg	0.13 kg	-	

*1 Check the specifications of sensors, switches, and loads connected to the RH42C4NT2P.
*2 The following figure shows a derating chart.

- Input voltage 26.4VDC

■: Input voltage 28.8V
X : Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
Y: Number of simultaneous on points (point)
*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SH42P and RH42C4NT2P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SH42P	RH42C4NT2P		
- Input specifications					
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	12VDC voltage cannot be used after replacement. ${ }^{*}$
Rated input current		Approx. 2mA (12VDC) Approx. 5mA (24VDC)	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		60\% (20 points/common) (at 24VDC)	Refer to the derating chart. ${ }^{*}$ 2	\triangle	Use the module within the range shown in the derating chart.
ON voltage/ON current		8VDC or higher/2mA or higher	19 V or higher/3mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*}$
OFF voltage/OFF current		4VDC or lower/0.6mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{*} 1$
Input resistance		Approx. $5 \mathrm{k} \Omega$	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	10 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less (at 24VDC)	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Input common terminal arrangement		32 points/common (common terminal: 1B1, 1B2)	32 points/common (common terminal: 1B01, 1B02)	\bigcirc	

■ Output specifications

Output type		Transistor output (sink type)		\bigcirc	
Number of output points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, 2A/common	0.2A/point, 2A/common	\bigcirc	
Maximum inrush current		$0.7 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 0.1 VDC (TYP.), 0.1 A at 0.2 VDC (MAX.)	0.2 A at 0.2 VDC (TYP.), 0.2 A at 0.3VDC (MAX.)	\bigcirc	
Response time	OFF to ON	1 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	1 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	12mA (TYP. 24VDC/common)	16 mA (at 24VDC)	\triangle	The current value is increased after replacement.
Output common terminal arrangement		32 points/common (common terminal: 2A1, 2A2)	32 points/common (common terminal: 2A01, 2A02)	\bigcirc	
Protection function		Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)		\bigcirc	
- Common specifications					
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	

Item	Specifications		Compatibility	Precautions
	A1SH42P	RH42C4NT2P		
External interface	40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be used.
Applicable wire size	0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	
Number of occupied I/O points	32 points (I/O assignment: Output 32 points)	32 points (I/O assignment: I/O combined 32 points)	\bigcirc	
Internal current consumption (5VDC)	130 mA (TYP. all points ON)	220 mA (TYP. all points ON)	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight	0.17 kg	0.13 kg	-	

*1 Check the specifications of sensors, switches, and loads connected to the RH42C4NT2P.
*2 The following figure shows a derating chart.

: Input voltage 26.4VDC
■: Input voltage 28.8 V
X : Ambient temperature (${ }^{\circ} \mathrm{C}$)
Y: Number of simultaneous on points (point)
*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SH42-S1 and RH42C4NT2P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SH42-S1	RH42C4NT2P		
- Input specifications					
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{* 1}$
Rated input current		Approx. 5mA	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		60\% (20 points/common) (at 24VDC)	Refer to the derating chart. ${ }^{*}$ 2	\triangle	Use the module within the range shown in the derating chart.
ON voltage/ON current		15VDC or higher/3mA or higher	19V or higher/3mA or higher	\triangle	The ON voltage is changed after replacement. ${ }^{*}{ }^{1}$
OFF voltage/OFF current		3VDC or lower/0.5mA or lower	6 V or lower/1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 5k Ω	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	0.3 ms or less (at 24VDC)	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 0.2 ms .
	ON to OFF	0.3 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Input common terminal arrangement		32 points/common (common terminal: 1B1, 1B2)	32 points/common (common terminal: 1B01, 1B02)	\bigcirc	
\square Output specifications					
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, 1.6A/common	0.2A/point, 2A/common	\bigcirc	
Maximum inrush current		$0.4 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 1.0 VDC (TYP.), 0.1 A at 2.5VDC (MAX.)	0.2 A at 0.2 VDC (TYP.), 0.2 A at 0.3 VDC (MAX.)	\bigcirc	
Response time	OFF to ON	2 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
Fuse		3.2A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8VDC cannot be used after replacement. ${ }^{* 1}$
	Current	8mA (TYP. 24VDC/common)	16 mA (at 24VDC)	\triangle	The current value is increased after replacement.
Output common terminal arrangement		32 points/common (common terminal: 2A1, 2A2)	32 points/common (common terminal: 2A01, 2A02)	\bigcirc	

Item	Specifications		Compatibility	Precautions
	A1SH42-S1	RH42C4NT2P		
Protection function	None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	
■ Common specifications				
Operation indication	ON indication (LED), 32 point switch-over using switch		\bigcirc	
External interface	40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be
Applicable wire size	0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	used.
Number of occupied I/O points	32 points (I/O assignment: Output 32 points)	32 points (I/O assignment: I/O combined 32 points)	\bigcirc	
Internal current consumption (5VDC)	500mA (TYP. all points ON)	220 mA (TYP. all points ON)	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight	0.27 kg	0.13 kg	-	

*1 Check the specifications of sensors, switches, and loads connected to the RH42C4NT2P.
*2 The following figure shows a derating chart.

- : Input voltage 26.4VDC

■: Input voltage 28.8 V
X : Ambient temperature (${ }^{\circ} \mathrm{C}$)
Y: Number of simultaneous on points (point)
*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1ms	5 ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SH42P-S1 and RH42C4NT2P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SH42P-S1	RH42C4NT2P		
- Input specifications					
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{* 1}$
Rated input current		Approx. 5mA	4mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		60\% (20 points/common) (at 24VDC)	Refer to the derating chart. ${ }^{*}{ }^{2}$	\triangle	Use the module within the range shown in the derating chart.
ON voltage/ON current		15VDC or higher/3mA or higher	19 V or higher/3mA or higher	\triangle	The ON voltage is changed after replacement. ${ }^{*}{ }^{1}$
OFF voltage/OFF current		3VDC or lower/0.5mA or lower	6 V or lower/ 1 mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. $5 \mathrm{k} \Omega$	$5.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	0.3 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{* 3}$	\bigcirc	Set the input response time of parameters to 0.2 ms .
	ON to OFF	0.3 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{* 3}$	\bigcirc	
Input common terminal arrangement		32 points/common (common terminal: 1B1, 1B2)	32 points/common (common terminal: 1B01, 1B02)	\bigcirc	
\square Output specifications					
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		32		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.1A/point, 2A/common	0.2A/point, 2A/common	\bigcirc	
Maximum inrush current		$0.7 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.1 A at 0.1 VDC (TYP.), 0.1 A at 0.2VDC (MAX.)	0.2 A at 0.2 VDC (TYP.), 0.2 A at 0.3 VDC (MAX.)	\bigcirc	
Response time	OFF to ON	1 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	1 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	12mA (TYP. 24VDC/common)	16 mA (at 24VDC)	\triangle	The current value is increased after replacement.
Output common terminal arrangement		32 points/common (common terminal: 2A1, 2A2)	32 points/common (common terminal: 2A01, 2A02)	\bigcirc	
Protection function		Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)		\bigcirc	
■ Common specifications					
Operation indication		ON indication (LED), 32 point switch-over using switch		\bigcirc	
External interface		40-pin connector $\times 2$ (A6CON1/2/3/4)		\bigcirc	Existing external wiring can be used.
Applicable wire size		0.088 to $0.3 \mathrm{~mm}^{2}$		\bigcirc	

Item	Specifications		Compatibility	Precautions
	A1SH42P-S1	RH42C4NT2P		
Number of occupied I/O points	32 points (I/O assignment: Output 32 points)	32 points (I/O assignment: $/ / \mathrm{O}$ combined 32 points)	O	
Internal current consumption (5VDC)	$130 \mathrm{~mA}($ TYP. all points ON)	$220 \mathrm{~mA}($ TYP. all points ON)	-	
External dimensions	$130(\mathrm{H}) \times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	$106(\mathrm{H}) \times 27.8(\mathrm{~W}) \times 110(\mathrm{D}) \mathrm{mm}$	-	
Weight	0.17 kg	0.13 kg	-	

*1 Check the specifications of sensors, switches, and loads connected to the RH42C4NT2P.
*2 The following figure shows a derating chart.

- Input voltage 26.4VDC

■: Input voltage 28.8 V
X : Ambient temperature (${ }^{\circ} \mathrm{C}$)
Y: Number of simultaneous on points (point)
*3 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.2 ms	0.3 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SX48Y18 and RX40C7+RY10R2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX48Y18	RX40C7+RY10R2		
- Input specifications					
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		8	16	\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{*}{ }^{1}$
Rated input current		Approx. 7mA	$7 \mathrm{~mA} \mathrm{TYP}. \mathrm{(at} \mathrm{24VDC)}$	\bigcirc	
Maximum number of simultaneous input points		100\% (8 points)	100\% (16 points)	\bigcirc	
ON voltage/ON current		14VDC or higher/3.5mA or higher	15 V or higher/4mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		6.5VDC or lower/1.7mA or lower	8V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k	$3.3 \mathrm{k} \Omega$	\bigcirc	
Response time	OFF to ON	10 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{*}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{*}$	\bigcirc	
Input common terminal arrangement		8 points/common (common terminal: TB9)	16 points/common (common terminal: TB17)	\bigcirc	

Output type		Contact output		\bigcirc	
Number of output points		8	16	\bigcirc	
Isolation method		Photocoupler	Relay	\triangle	Each isolation method has the same isolation performance although the method is changed after replacement.
Rated switching voltage, current		2 A at 24 VDC (resistive load)/point, 2 A at $240 \mathrm{VAC}(\operatorname{COS} \theta=1) /$ point, $8 \mathrm{~A} /$ common		\bigcirc	
Minimum switching load		1 mA at 5VDC		\bigcirc	
Maximum switching load		264VAC, 125VDC		\bigcirc	
Response time	OFF to ON	10 ms or less		\bigcirc	
	ON to OFF	12 ms or less		\bigcirc	
Life		Refer to the life table. ${ }^{* 3}$		\bigcirc	
Maximum switching frequency		3600 times/hour		\bigcirc	
Surge suppressor		None		\bigcirc	
Fuse		None		\bigcirc	
External power supply	Voltage	$24 \mathrm{VDC} \pm 10 \%$ (ripple voltage $4 \mathrm{Vp}-\mathrm{p}$ or lower)	-	\bigcirc	No external power supply is required.
	Current	45 mA (TYP. 24VDC, all points ON)	-	\bigcirc	
Output common terminal arrangement		8 points/common (common terminal: TB18)	16 points/common (common terminal: TB17)	\bigcirc	
- Common specifications					
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws) $\times 2$	\times	Wiring needs to be changed after replacement.
Applicable wire size		0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal		R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	

Item	Specifications		Compatibility	Precautions
	A1SX48Y18	RX40C7+RY10R2		
Number of occupied I/O points	16 (//O assignment: Output 16 points)	16 (I/O assignment: Input 16 points) 16 (I/O assignment: Output 16 points)	\times	Use one input module and one output module.
Internal current consumption (5VDC)	85mA (TYP. all points ON)	$110 \mathrm{~mA}+450 \mathrm{~mA}$ (TYP. all points ON)	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight	0.23 kg	$0.16 \mathrm{~kg}+0.22 \mathrm{~kg}$	-	

*1 Check the specifications of sensors, switches, and loads connected to the RX40C7/RY10R2.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*3 The following tables show the life data.

A1SY48Y18

Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at 240 VAC (COS $\phi=0.7$) 100 thousand times or more
	1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at 240 VAC $(\operatorname{COS} \phi=0.35) 100$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at 100 VDC (L/R = 7ms) 100 thousand times or more
RY10R2	
Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 100$ thousand times or more 0.4 A at $200 \mathrm{VAC}, 0.3 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 300$ thousand times or more
	1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 100$ thousand times or more 0.3 A at 200VAC, 0.15 A at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 300$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 100$ thousand times or more 0.3 A at $24 \mathrm{VDC}, 0.03 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 300$ thousand times or more

A1SX48Y58 and RX40C7+RY40NT5P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SX48Y58	RX40C7+RY40NT5P		
- Input specifications					
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		8	16	\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{*}{ }^{1}$
Rated input current		Approx. 7mA	$7 \mathrm{~mA} \mathrm{TYP}. \mathrm{(at} \mathrm{24VDC)}$	\bigcirc	
Maximum number of simultaneous input points		100\% (8 points)	100\% (16 points)	\bigcirc	
ON voltage/ON current		14VDC or higher/3.5mA or higher	15 V or higher/4mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{* 1}$
OFF voltage/OFF current		6.5VDC or lower/1.7mA or lower	8V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k	$3.3 \mathrm{k} \Omega$	\bigcirc	
Response time	OFF to ON	10 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{*}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{*}$	\bigcirc	
Input common terminal arrangement		8 points/common (common terminal: TB9)	16 points/common (common terminal: TB17)	\bigcirc	

Output type		Transistor output (sink type)		\bigcirc	
Number of output points		8	16	\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		12/24VDC (10.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.5A/point, 2A/common	0.5A/point, 5A/common	\bigcirc	
Maximum inrush current		$0.4 \mathrm{~A}, 10 \mathrm{~ms}$ or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		$\begin{aligned} & 0.5 \mathrm{~A} \text { at } 0.9 \mathrm{VDC} \text { (TYP.), } 0.5 \mathrm{~A} \text { at } \\ & 1.5 \mathrm{VDC} \text { (MAX.) } \end{aligned}$	0.5 A at 0.2 VDC (TYP.), 0.5 A at 0.3VDC (MAX.)	\bigcirc	
Response time	OFF to ON	2 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
Fuse		3.2A (1 fuse/common), not replaceable (Breaking capacity: 50A)	None	\times	No fuse is built in this model.
Fuse blown indication		Available (An LED turns on when a fuse is blown. A signal is output to a CPU module.)	None	\times	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	60mA (TYP. 24VDC/common)	4 mA (at 24VDC)	\bigcirc	
Output common terminal arrangement		8 points/common (common terminal: TB19)	16 points/common (common terminal: TB18)	\bigcirc	
Protection function		None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	

Common specifications

Item	Specifications		Compatibility	Precautions
	A1SX48Y58	RX40C7+RY40NT5P		
Operation indication	ON indication (LED)		\bigcirc	
External interface	20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws) $\times 2$	\times	Wiring needs to be changed after replacement.
Applicable wire size	0.75 to $1.25 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal	R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points	16 (I/O assignment: Output 16 points)	16 (I/O assignment: Input 16 points) 16 (I/O assignment: Output 16 points)	\times	Use one input module and one output module.
Internal current consumption (5VDC)	60mA (TYP. all points ON)	$110 \mathrm{~mA}+140 \mathrm{~mA}$ (TYP. all points ON)	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight	0.20 kg	$0.16 \mathrm{~kg}+0.16 \mathrm{~kg}$	-	

*1 Check the specifications of sensors, switches, and loads connected to the RX40C7/RY40NT5P.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SJ-56DT and RX40C7+RY40NT5P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SJ-56DT	RX40C7+RY40NT5P		
- Input specifications					
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32	16	\triangle	When 17 or more channels are required, use two pieces of the RX40C7.
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{* 1}$
Rated input current		Approx. 7mA	7mA TYP. (at 24VDC)	\bigcirc	
Maximum number of simultaneous input points		60\% (10 points/common)	100\% (16 points)	\bigcirc	
ON voltage/ON current		14VDC or higher/3.5mA or higher	15 V or higher/4mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*}{ }^{1}$
OFF voltage/OFF current		6.5VDC or lower/1.7mA or lower	8 V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k	$3.3 \mathrm{k} \Omega$	\bigcirc	
Response time	OFF to ON	10 ms or less (at 24VDC)	Configured in the parameter. ${ }^{*}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{*}$	\bigcirc	
Input common terminal arrangement		16 points/common (common terminal: TB17, TB34)	16 points/common (common terminal: TB17)	\bigcirc	
■ Output specifications					
Output type		Transistor output (sink type)		\bigcirc	
Number of output points		24	16	\triangle	When 17 or more points are required, use two modules of the RY40NT5P.
Isolation method		Photocoupler		\bigcirc	
Rated load voltage		24VDC (19.2 to 30VDC)	12/24VDC (+20\%/-15\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
Maximum load current		0.5A/point, 4A/common	0.5A/point, 5A/common	\bigcirc	
Maximum inrush current		4A, 10ms or less	Current is to be limited by the overload protection function.	\triangle	The inrush current value is changed after replacement. ${ }^{* 1}$
Leakage current at OFF		0.1 mA or lower		\bigcirc	
Maximum voltage drop at ON		0.5 A at 0.9 VDC (TYP.), 0.5 A at 1.5VDC (MAX.)	0.5 A at 0.2 VDC (TYP.), 0.5 A at 0.3VDC (MAX.)	\bigcirc	
Response time	OFF to ON	2 ms or less	0.5 ms or less	\bigcirc	
	ON to OFF	2 ms or less (resistive load)	1 ms or less (rated load, resistive load)	\bigcirc	
Surge suppressor		Zener diode		\bigcirc	
External power supply	Voltage	12/24VDC (10.2 to 30VDC)	12/24VDC (+20/-15\%) (ripple ratio within 5\%)	\triangle	The voltage exceeding 28.8 VDC cannot be used after replacement. ${ }^{* 1}$
	Current	60mA (TYP. 24VDC/common)	4 mA (at 24VDC)	\bigcirc	
Output common terminal arrangement		8 points/common (common terminal: TB10, TB20, TB30)	16 points/common (common terminal: TB18)	\triangle	As the common changes from 16 commons to a common, wiring with a different voltage for each common is not possible.
Protection function		None	Overheat protection function (in increments of 1 point), overload protection function (in increments of 1 point)	\bigcirc	

Item	Specifications		Compatibility	Precautions
	A1SJ-56DT	RX40C7+RY40NT5P		
■ Common specifications				
Operation indication	ON indication (LED)		\bigcirc	
External interface	34-point terminal block (M3.5 $\times 6$ screws) $\times 2$	18-point terminal block (M3 $\times 6$ screws) $\times 2$	\times	Wiring needs to be changed after replacement.
Applicable wire size	0.75 to $2 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8 mm or less)	\times	
Applicable solderless terminal	R1.25-3.5, R2-3.5, RAV1.25-3.5, RAV2-3.5	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points	128 (I/O assignment: Output 64 points (slot 0) and empty 16 points (slots 1 to 4))	16 (I/O assignment: Input 16 points) 16 (I/O assignment: Output 16 points)	\times	Use one input module and one output module.
Internal current consumption (5VDC)	220mA (TYP. all points ON)	$110 \mathrm{~mA}+140 \mathrm{~mA}$ (TYP. all points ON)	-	
External dimensions	$130(\mathrm{H}) \times 174.5(\mathrm{~W}) \times 65.6(\mathrm{D}) \mathrm{mm}$	106(H) $\times 27.8(\mathrm{~W}) \times 110(\mathrm{D}) \mathrm{mm}$	-	
Weight	0.70 kg	$0.16 \mathrm{~kg}+0.16 \mathrm{~kg}$	-	

*1 Check the specifications of sensors, switches, and loads connected to the RX40C7/RY40NT5P.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

A1SJ-56DR and RX40C7+RY10R2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SJ-56DR	RX40C7+RY10R2		
■ Input specifications					
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		32	16	\triangle	When 17 or more channels are required, use two pieces of the RX40C7.
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		24VDC (+10/-20\%, ripple ratio within 5\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\triangle	The operating voltage range is changed after replacement. ${ }^{* 1}$
Rated input current		Approx. 7mA	7mA TYP. (at 24VDC)	\bigcirc	
Maximum number of simultaneous input points		60\% (10 points/common)	100\% (16 points)	\bigcirc	
ON voltage/ON current		14VDC or higher/3.5mA or higher	15 V or higher/4mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*}$
OFF voltage/OFF current		6.5VDC or lower/1.7mA or lower	8 V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{* 1}$
Input resistance		Approx. 3.3k	3.3k Ω	\bigcirc	
Response time	OFF to ON	10 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{*}$	\bigcirc	Set the input response time of parameters to 10 ms .
	ON to OFF	10 ms or less (at 24 VDC)	Configured in the parameter. ${ }^{*}$	\bigcirc	
Input common terminal arrangement		16 points/common (common terminal: TB17, TB34)	16 points/common (common terminal: TB17)	\bigcirc	

Output type		Contact output		\bigcirc	
Number of output points		24	16	\triangle	When 17 or more points are required, use two modules of the RY10R2.
Isolation method		Photocoupler	Relay	\triangle	Each isolation method has the same isolation performance although the method is changed after replacement.
Rated switching voltage, current		2A at 24VDC (resistive load)/point, 2 A at $240 \mathrm{VAC}(\operatorname{COS} \theta=1) /$ point, 5A/common	2A at 24VDC (resistive load)/point, 2 A at $240 \mathrm{VAC}(\operatorname{COS} \theta=1) /$ point, 8A/common	\bigcirc	
Minimum switching load		1 mA at 5VDC		\bigcirc	
Maximum switching load		264VAC, 125VDC		\bigcirc	
Response time	OFF to ON	10 ms or less		\bigcirc	
	ON to OFF	12 ms or less		\bigcirc	
Life		Refer to the life table. ${ }^{* 3}$		\bigcirc	
Maximum switching frequency		3600 times/hour		\bigcirc	
Surge suppressor		None		\bigcirc	
Fuse		None		\bigcirc	
External power supply	Voltage	$24 \mathrm{VDC} \pm 10 \%$ (ripple voltage 4 Vp -p or lower)	-	\bigcirc	No external power supply is required.
	Current	140 mA (TYP. 24VDC, all points ON)	-	\bigcirc	
Output common terminal arrangement		8 points/common (common terminal: TB9, TB18, TB27)	16 points/common (common terminal: TB17)	\triangle	As the common changes from 16 commons to a common, wiring with a different voltage for each common is not possible.

- Common specifications

Operation indication	ON indication (LED)	\bigcirc	

| Item | Specifications | | Compatibility | Precautions |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | A1SJ-56DR | RX40C7+RY10R2 | | |

*1 Check the specifications of sensors, switches, and loads connected to the RX40C7/RY10R2.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*3 The following tables show the life data.

A1SJ-56DR

Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at 240 VAC (COS $\phi=0.7$) 100 thousand times or more
	1 A at $200 \mathrm{VAC}, 0.5 \mathrm{~A}$ at 240 VAC $(\operatorname{COS} \phi=0.35) 100$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at 100 VDC (L/R $=7 \mathrm{~ms}$) 100 thousand times or more
RY10R2	
Mechanical	20 million times or more
Electrical	Rated switching voltage/current load: 100 thousand times or more
	1.5 A at $200 \mathrm{VAC}, 1 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 100$ thousand times or more 0.4 A at $200 \mathrm{VAC}, 0.3 \mathrm{~A}$ at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.7) 300$ thousand times or more
	1 A at 200VAC, 0.5 A at $240 \mathrm{VAC}(\operatorname{COS} \phi=0.35) 100$ thousand times or more 0.3 A at 200VAC, 0.15 A at 240VAC $(\operatorname{COS} \phi=0.35) 300$ thousand times or more
	1 A at $24 \mathrm{VDC}, 0.1 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 100$ thousand times or more 0.3 A at $24 \mathrm{VDC}, 0.03 \mathrm{~A}$ at $100 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}) 300$ thousand times or more

Interrupt modules

A1SI61 (when 24VDC is used) and RX40C7

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SI61	RX40C7		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%)	24VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		Approx. 4mA (12VDC) Approx. 8mA (24VDC)	7mA TYP. (at 24VDC)	\triangle	The rated input current is decreased after replacement. ${ }^{* 1}$
Maximum number of simultaneous input points		100\% (16 points)	100\% (16 points)	\bigcirc	
ON voltage/ON current		9VDC or higher/3mA or higher	15 V or higher/ 4 mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*}$
OFF voltage/OFF current		4VDC or lower/1mA or higher	8 V or lower/2mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{*}{ }^{1}$
Input resistance		Approx. $2.7 \mathrm{k} \Omega$	$3.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	0.2 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	Set the input response time of parameters to $0.2 / 0.1 \mathrm{~ms}$.
	ON to OFF	0.2 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTX40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}{ }^{3}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8mm or less)	\times	
Applicable solderless terminal		$\begin{aligned} & \text { 1.25-3.5, 1.25-YS3A, 2-3.5, } \\ & \text { 2-YS3A, V1.25-3.5, V1.25-YS3A, } \\ & \text { V2-S3, V2-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		32 (I/O assignment: Special 32 points)	16 (//O assignment: Input 16 points)	\triangle	The number of occupied I/O points is changed after replacement. Interrupt settings can be configured in the parameter setting of GX Works3.
Internal current consumption (5VDC)		57mA (TYP. all points ON)	110mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

*1 Check the specifications of sensors and switches connected to the RX40C7.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.35 ms	0.4 ms	0.5 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

[^3]
A1SI61 (when 12VDC is used) and RX70C4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SI61	RX70C4		
Input type		DC input (positive common type)	DC input (positive common/ negative common shared type)	\bigcirc	
Number of input points		16		\bigcirc	
Isolation method		Photocoupler		\bigcirc	
Rated input voltage		12/24VDC (+10/-15\%)	5/12VDC (+20/-15\%, ripple ratio within 5\%)	\bigcirc	
Rated input current		Approx. 4mA (12VDC) Approx. 8mA (24VDC)	1.7 mA TYP. (at 5VDC) 4.8mA TYP. (at 12VDC)	\bigcirc	
Maximum number of simultaneous input points		100\% (16 points)	100\% (16 points)	\bigcirc	
ON voltage/ON current		9VDC or higher/3mA or higher	3.5 V or higher/ 1 mA or higher	\triangle	The ON voltage and ON current are changed after replacement. ${ }^{*}$
OFF voltage/OFF current		4VDC or lower/1mA or higher	1V or lower/0.1mA or lower	\triangle	The OFF voltage and OFF current are changed after replacement. ${ }^{*}$
Input resistance		Approx. $2.7 \mathrm{k} \Omega$	$2.3 \mathrm{k} \Omega$	\triangle	The input resistance is changed after replacement. ${ }^{* 1}$
Response time	OFF to ON	0.2 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	Set the input response time of parameters to 0.1 ms .
	ON to OFF	0.2 ms or less	Configured in the parameter. ${ }^{*}$	\bigcirc	
Common terminal arrangement		16 points/common (common terminal: TB9, TB18)	16 points/common (common terminal: TB17)	\bigcirc	
Operation indication		ON indication (LED)		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQTX40), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}{ }^{3}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (Outside diameter: 2.8mm or less)	\times	
Applicable solderless terminal		$\begin{aligned} & \text { 1.25-3.5, 1.25-YS3A, 2-3.5, } \\ & \text { 2-YS3A, V1.25-3.5, V1.25-YS3A, } \\ & \text { V2-S3, V2-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points		32 (I/O assignment: Special 32 points)	16 (//O assignment: Input 16 points)	\triangle	The number of occupied I/O points is changed after replacement. Interrupt settings can be configured in the parameter setting of GX Works3.
Internal current consumption(5VDC)		57mA (TYP. all points ON)	100mA (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.20 kg	0.16 kg	-	

*1 Check the specifications of sensors and switches connected to the RX70C4.
*2 The following table shows the input response times.

Timing	Set value								
	0.1 ms	0.2 ms	0.4 ms	0.6 ms	1 ms	5 ms	10 ms	20 ms	70 ms
OFF to ON (MAX.)	0.2 ms	0.3 ms	0.4 ms	0.5 ms	1 ms	5 ms	10 ms	20 ms	70 ms
ON to OFF (MAX.)	0.41 ms	0.5 ms	0.6 ms	0.7 ms	1 ms	5 ms	10 ms	20 ms	70 ms

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

Blank cover modules

A1SG60 and RG60

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1SG60	RG60		
Number of occupied I/O points	Default: 16 (Can be changed to $0,16,32,48$, or 64 by the parameter.)	Default: 16 (Can be changed to $0,16,32,48$, $64,128,256,512$, or 1024 by the parameter.)	\bigcirc	
Application	Used as a dustproof cover for a slot not loaded with an I/O module (especially a vacant slot between modules).		\bigcirc	
External dimensions	130(H) $\times 34.5$ (W) $\times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight	0.08 kg	0.07 kg	-	

3.3 Precautions for Replacement

Wiring

Size of cables and solderless terminals

The sizes of wires or solderless terminals that can be used for terminal blocks vary between MELSEC iQ-R series and MELSEC-AnS/QnAS series, since modules and terminal blocks of the MELSEC iQ-R series are smaller than those of the MELSEC-AnS/QnAS series.

When replacing MELSEC-AnS/QnAS series modules with MELSEC iQ-R series modules, use wires and solderless terminals that meet the specifications of MELSEC iQ-R series modules.
The wiring change is not required when the upgrade tool conversion adapter is used for replacement.
(Connection change for power supply and common terminals is required.)
As the MELSEC iQ-R series is a smaller model, wiring space on terminal blocks is narrower. Pay much attention in wiring

External wiring connector

An external wiring connecter is not included in packages of 32 - and 64 -point I/O modules of the MELSEC iQ-R series.
Purchase the necessary number of the connecters (A6COND) separately.

Input modules

Specifications change of rated input current

Check the specifications of external devices (such as sensors and switches) since the rated input current is decreased for some MELSEC iQ-R series input modules compared to that for the MELSEC-AnS/QnAS series.

Specifications changes of ON voltage/ON current and OFF voltage/OFF current

Check the specifications of external devices (such as sensors and switches) since the ON voltage/ON current and OFF voltage/OFF current differ for some MELSEC iQ-R series input modules compared to that for the MELSEC-AnS/QnAS series.

Specifications change of rated voltage value

The RX4 $\square C \square$ DC input module of the MELSEC iQ-R series is dedicated to 24 VDC . Use the RX7ロC4 DC input module at 12VDC.

Specifications change of response time

For the MELSEC iQ-R series DC input modules, the I/O response time can be set with the parameter. Set the I/O response time that matches the response time of the MELSEC-AnS/QnAS series DC input module.

Specifications change of common terminal arrangement

The common terminal arrangement may differ between the MELSEC-AnS/QnAS series and MELSEC iQ-R series. Pay attention when applying a different voltage to each common.

Output modules

Specifications change of rated output current

Check the specifications of the load side since the rated output current is decreased for some MELSEC iQ-R series output modules compared to that for the MELSEC-AnS/QnAS series.

Specifications change of common terminal arrangement

The common terminal arrangement may differ between the MELSEC-AnS/QnAS series and MELSEC iQ-R series. Pay attention when applying a different voltage to each common.

Specifications change of common maximum load current

Since the maximum load current per common may differ between the MELSEC-AnS/QnAS series and MELSEC iQ-R series, check them before use.

Leakage current at OFF

Pay attention that devices that operate with a minute current (such as an LED and a buzzer) connected to the transistor output module may operate due to leakage current at OFF.

Triac output module

Operation of the triac that is used on a triac output module may be unstable when a sudden change occurs in the voltage and current due to component characteristics. Problems due to voltage and current fluctuation may become obvious depending on individual differences between components. Refer to the following manual and check relevant items in the precautions.

Interrupt modules

To use the interrupt function in the MELSEC iQ-R series system, use an input module. Set the interrupt function in the module parameter of the input module used.

```
Point/
For details on these precautions, refer to the following.
L]MELSEC iQ-R Module Configuration Manual
L_MELSEC iQ-R I/O Module User's Manual
```


4.1 Alternative Model List

This section lists alternative models of the MELSEC iQ-R series power supply modules in accordance with the specifications of the MELSEC-AnS/QnAS series power supply modules.
Select models that best suit your application considering the specifications of the MELSEC-AnS/QnAS series power supply module currently used.

Item	MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Specification difference
Power supply module	A1S61PN	R61P	(1) External wiring: Changed (2) Slots: Not changed (3) Specifications: Terminal screws (M3.5 screw \rightarrow M4 screw), applicable tightening torque (M3.5 screw: 59 to $88 \mathrm{~N} \cdot \mathrm{~cm} \rightarrow$ M4 screw: 102 to $138 \mathrm{~N} \cdot \mathrm{~cm}$) (4) Accessories: Not changed
	A1S62PN	R62P	(1) External wiring: Changed (2) Slots: Not changed (3) Specifications: Terminal screws other than +24 and 24G terminal screws (M3.5 screw \rightarrow M4 screw), applicable tightening torque (M3.5 screw: 59 to $88 \mathrm{~N} \cdot \mathrm{~cm} \rightarrow$ M4 screw: 102 to $138 \mathrm{~N} \cdot \mathrm{~cm}$) (4) Accessories: Not changed
	A1S63P	R63P	(1) External wiring: Changed (2) Slots: Not changed (3) Specifications: Terminal screws (M3.5 screw \rightarrow M4 screw), applicable tightening torque (M3.5 screw: 59 to $88 \mathrm{~N} \cdot \mathrm{~cm} \rightarrow$ M4 screw: 102 to $138 \mathrm{~N} \cdot \mathrm{~cm}$) (4) Accessories: Not changed
	A1SJHCPU (power supply part)	R61P	(1) External wiring: Changed (2) Slots: Changed (Integrated structure of the main base, CPU, and power supply part \rightarrow single power supply module) (3) Specifications: Terminal screws (M3.5 screw \rightarrow M4 screw), applicable tightening torque (M3.5 screw: 59 to $88 \mathrm{~N} \cdot \mathrm{~cm} \rightarrow$ M4 screw: 102 to $138 \mathrm{~N} \cdot \mathrm{~cm}$) (4) Accessories: Not changed

4.2 Specification Comparison Tables

A1S61PN and R61P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item

Item	Specifications		R61P	Compatibility	Precautions
	RAV1.25-3.5, RAV2-3.5	RAV1.25-4, RAV2-4, Thickness of 0.8 mm or less, up to two solderless terminal connections per terminal	\times	Wiring needs to be changed after replacement.	
Applicable tightening torque	59 to $88 \mathrm{~N} \cdot \mathrm{~cm}$	102 to $138 \mathrm{~N} \cdot \mathrm{~cm}$	\times	Tighten the screws within the applicable torque range.	
External dimensions	$130(\mathrm{H}) \times 55(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	$106(\mathrm{H}) \times 54.6(\mathrm{~W}) \times 110(\mathrm{D}) \mathrm{mm}$	-		
Weight	0.60 kg	0.41 kg	-		

A1S62PN and R62P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S62PN	R62P		
Input power supply voltage		100 to 240VAC (+10\%, -15\%) (85 to 264VAC)		\bigcirc	
Input frequency		$50 / 60 \mathrm{~Hz} \pm 5 \%$		\bigcirc	
Input voltage distortion factor		Within 5\%		\bigcirc	
Maximum input apparent power		105VA	120VA	\triangle	Check the capacity of the UPS when used.
Inrush current		20A within 8 ms		\bigcirc	
Rated output current	5VDC	3A	3.5A	\bigcirc	
	24VDC	0.6A		\bigcirc	
External output voltage		$24 \mathrm{VDC} \pm 10 \%$		-	
Overcurrent protection	5VDC	3.3A or higher	3.8A or higher	\bigcirc	
	24VDC	0.66 A or higher		-	
Overvoltage protection	5VDC	5.5 to 6.5 V		\bigcirc	
	24VDC	-		-	
Efficiency		65\% or more	76\% or more	\bigcirc	
Allowable momentary power failure time		Within 20 ms		\bigcirc	
Withstand voltage		2830VAC rms per 3 cycles (altitude 2000m) between batch inputs and LG and batch outputs and FG	2300VAC rms per minute (altitude 0 to 2000 m) between the combined "line input/LG terminals" and the "FG terminal and output"	\bigcirc	
Insulation resistance		$10 \mathrm{M} \Omega$ or higher by 500 VDC insulation resistance tester between batch inputs and LG and batch outputs and FG	$10 \mathrm{M} \Omega$ or higher by 500 VDC insulation resistance tester between the combined "line input/LG terminals" and the "FG terminal and output", the line input and LG terminals, the output and FG terminals	\bigcirc	
Noise immunity		By noise simulator of $1500 \mathrm{Vp}-\mathrm{p}$ noise voltage, $1 \mu \mathrm{~s}$ noise width, and 25 to 60 Hz noise frequency Noise voltage IEC 801-4, 2kV	Noise voltage 1500 V p-p, noise width $1 \mu \mathrm{~s}$, noise frequency 25 to 60 Hz (noise simulator condition) Noise immunity test IEC 61000-4-4: 2kV	\bigcirc	
Operation indication		POWER LED (When 5VDC is output: On)	POWER LED (Normal: On (green), Error: Off)	\bigcirc	
Fuse		Built-in (user-unchangeable)		\bigcirc	
Contact output section	Application	None	$\overline{\mathrm{ERR}}$ contact	\bigcirc	
	Rated switching voltage, current		0.5 A at 24 VDC		
	Minimum switching load		1 mA at 5VDC		
	Response time		Off \rightarrow on: 10 ms or less On \rightarrow off: 12 ms or less		
	Life		Mechanical: 20 million times or more Electrical: Rated switching voltage/ current, 100 thousand times or more		
Terminal screw size		M 3.5×7	M4.0 (M3.5 screw for $+24 \mathrm{~V}, 24 \mathrm{G}$ terminals)	\times	Wiring needs to be changed after replacement.
Applicable wire size		$0.75 \text { to } 2 \mathrm{~mm}^{2}$		\bigcirc	

Item	Specifications		Compatibility	Precautions	
	RAV1.25-3.5, RAV2-3.5	RAV1.25-4, RAV2-4, Thicknes of 0.8 mm or less, up to two solderless terminal connections per terminal (RAV1.25-3.5, RAV2-3.5, thickness 0.8 mm or less for +24 V and 24 G terminals. Two solderless terminals can be connected to one terminal. $)$	\times	Wiring needs to be changed after replacement.	
Applicable tightening torque	59 to $88 \mathrm{~N} \cdot \mathrm{~cm}$	102 to $138 \mathrm{~N} \cdot \mathrm{~cm}$	\times	Tighten the screws within the applicable torque range.	
External dimensions	$130(\mathrm{H}) \times 55(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	$106(\mathrm{H}) \times 54.6(\mathrm{~W}) \times 110(\mathrm{D}) \mathrm{mm}$	-	-	
Weight	0.60 kg	0.45 kg	-		

A1S63P and R63P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S63P	R63P		
Input power supply voltage		24VDC (+30\%, -35\%) (15.6 to 31.2VDC)		\bigcirc	
Input frequency		-		\bigcirc	
Input voltage distortion factor		-		\bigcirc	
Maximum input power		41W	50W	\triangle	Refer to the power capacity of the supply power.
Inrush current		81A within 1 ms	100A within 1ms (24VDC input)	\bigcirc	
Rated output current	5VDC	5A	6.5A	\bigcirc	
	24VDC	-		-	
Overcurrent protection	5VDC	5.5A or higher	7.1A or higher	\bigcirc	
	24VDC	-		-	
Overvoltage protection	5VDC	5.5 to 6.5 V		\bigcirc	
	24VDC	-		-	
Efficiency		65\% or more	70\% or more	\bigcirc	
Allowable momentary power failure time		Within 10 ms (at 24VDC input)		\bigcirc	
Withstand voltage		500VAC between primary terminal and 5VDC terminal	510VAC rms per minute (altitude 0 to 2000m) between the primary terminal and 5VDC terminal	\bigcirc	
Insulation resistance		$10 \mathrm{M} \Omega$ or higher by 500 VDC insulation resistance tester between batch inputs and LG and batch outputs and FG	$10 \mathrm{M} \Omega$ or higher by 500 VDC insulation resistance tester between the combined "line input/LG terminals" and the "FG terminal and output", the line input and LG terminals, the output and FG terminals	\bigcirc	
Noise immunity		Noise voltage 500 Vp -p, noise width $1 \mu \mathrm{~s}$, noise frequency 25 to 60 Hz (noise simulator condition)		\bigcirc	
Operation indication		POWER LED (When 5VDC is output: On)	POWER LED (Normal: On (green), Error: Off)	\bigcirc	
Fuse		Built-in (user-unchangeable)		\bigcirc	
Contact output section	Application	None	$\overline{\mathrm{ERR}}$ contact	\bigcirc	
	Rated switching voltage, current		0.5 A at 24VDC		
	Minimum switching load		1 mA at 5VDC		
	Response time		Off \rightarrow on: 10 ms or less On \rightarrow off: 12 ms or less		
	Life		Mechanical: 20 million times or more Electrical: Rated switching voltage/ current, 100 thousand times or more		
Terminal screw size		M 3.5×7	M4.0	\times	Wiring needs to be changed after replacement.
Applicable wire size		0.75 to $2 \mathrm{~mm}^{2}$		\bigcirc	
Applicable solderless terminal		RAV1.25-3.5, RAV2-3.5	RAV1.25-4, RAV2-4, Thickness of 0.8 mm or less, up to two solderless terminal connections per terminal	\times	Wiring needs to be changed after replacement.
Applicable tightening torque		59 to $88 \mathrm{~N} \cdot \mathrm{~cm}$	102 to $138 \mathrm{~N} \cdot \mathrm{~cm}$	\times	Tighten the screws within the applicable torque range.
External dimensions		130(H) $\times 55(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 54.6$ (W) $\times 110$ (D) mm	-	
Weight		0.5 kg	0.41 kg	-	

A1SJHCPU (power supply part) and R61P

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SJHCPU (power supply part)	R61P		
Input power supply voltage		100 to 120VAC (+10\%, -15\%) (85 to 132VAC)	100 to 240VAC (+10\%, -15\%) (85 to 264VAC)	\bigcirc	The R61P is a wide-range type applicable to 100 to 240VAC.
		$\begin{aligned} & 200 \text { to } 240 \text { VAC }(+10 \%,-15 \%)(170 \\ & \text { to } 264 \mathrm{VAC}) \end{aligned}$			
Input frequency		50/60Hz $\pm 5 \%$		\bigcirc	
Input voltage distortion factor		Within 5\%		\bigcirc	
Maximum input apparent power		100VA	130VA	\triangle	Check the capacity of the UPS when used.
Inrush current		20A within 8 ms		\bigcirc	
Rated output current	5VDC	3A	6.5A	\bigcirc	
	24VDC	-		-	
Overcurrent protection	5VDC	3.3A or higher	7.1A or higher	\bigcirc	
	24VDC	-		-	
Overvoltage protection	5VDC	5.5 to 6.5 V		\bigcirc	
	24VDC	-		-	
Efficiency		65\% or more	76\% or more	\bigcirc	
Allowable momentary power failure time		Within 20ms (100VAC or higher)	Within 20 ms	\bigcirc	
Withstand voltage		2830VAC rms per 3 cycles (altitude 2000m) between batch inputs and LG and batch outputs and FG	2300 VAC rms per minute (altitude 0 to 2000 m) between the combined "line input/LG terminals" and the "FG terminal and output"	\bigcirc	
Insulation resistance		$10 \mathrm{M} \Omega$ or higher by 500 VDC insulation resistance tester between batch inputs and LG and batch outputs and FG	$10 \mathrm{M} \Omega$ or higher by 500 VDC insulation resistance tester between the combined "line input/LG terminals" and the "FG terminal and output", the line input and LG terminals, the output and FG terminals	\bigcirc	
Noise immunity		By noise simulator of $1500 \mathrm{Vp}-\mathrm{p}$ noise voltage, $1 \mu \mathrm{~s}$ noise width, and 25 to 60 Hz noise frequency Noise voltage IEC 801-4, 2kV	Noise voltage 1500 Vp -p, noise width $1 \mu \mathrm{~s}$, noise frequency 25 to 60 Hz (noise simulator condition) Noise immunity test IEC 61000-4-4: 2 kV	\bigcirc	
Operation indication		POWER LED	POWER LED (Normal: On (green), Error: Off)	\bigcirc	
Fuse		Built-in (user-unchangeable)		-	
Contact output section	Application	None	$\overline{\mathrm{ERR}}$ contact	\bigcirc	
	Rated switching voltage, current		0.5 A at 24 VDC		
	Minimum switching load		1 mA at 5VDC		
	Response time		Off \rightarrow on: 10 ms or less On \rightarrow off: 12 ms or less		
	Life		Mechanical: 20 million times or more Electrical: Rated switching voltage/ current, 100 thousand times or more		
Terminal screw size		M 3.5×8	M4.0	\times	Wiring needs to be changed after replacement.

Item	Specifications		Compatibility	Precautions
	A1SJHCPU (power supply part)	R61P		
Applicable wire size	0.3 to $2 \mathrm{~mm}^{2}$	0.75 to $2 \mathrm{~mm}^{2}$	\times	Wiring needs to be changed after replacement.
Applicable solderless terminal	RAV1.25-3.5, RAV2-3.5	RAV1.25-4, RAV2-4, Thickness of 0.8 mm or less, up to two solderless terminal connections per terminal	\times	Wiring needs to be changed after replacement.
Applicable tightening torque	59 to $88 \mathrm{~N} \cdot \mathrm{~cm}$	102 to $138 \mathrm{~N} \cdot \mathrm{~cm}$	\times	Tighten the screws within the applicable torque range.
External dimensions	$130(\mathrm{H}) \times 330(\mathrm{~W}) \times 82(\mathrm{D}) \mathrm{mm}$ (including the base unit and CPU module)	106(H) $\times 54.6$ (W) $\times 110$ (D) mm	-	The R62P is the single power supply module.
Weight	1.00 kg (including the base unit and CPU module)	0.41 kg	-	The R62P is the single power supply module.

4.3 Precautions for Replacement

Rated output current

The current consumption differs between the MELSEC-iQ-R series and MELSEC-AnS/QnAS series modules. Calculate the current consumption for the entire system before selecting a power supply module.

Input power supply voltage

The R61P and R62P are the wide-range type power supply module. They support input power supply voltages of both 100VAC and 200VAC.

Power capacity of the supply power

Select a power supply having enough power capacity for a power supply module. (For an AC power supply module, the power capacity should be twice or more as large as the current consumption of the power supply module, and four times or more for a DC power supply module.)

Large-capacity type power supply module

The MELSEC iQ-R series power supply module, R64P, is the large-capacity type (9A). If the current capacity is not enough, consider using the R64P.

5 BASE UNIT AND EXTENSION CABLE REPLACEMENT

5.1 Alternative Model Lists

This section lists alternative models of the MELSEC iQ-R series base units and extension cables in accordance with the specifications of the MELSEC-AnS/QnAS series base units and extension cables.
Select models that best suit your application considering the specifications of the MELSEC-AnS/QnAS series base units and extension cables currently used.

Base units

Item	MELSEC-AnS/ QnAS series	MELSEC iQ- \mathbf{R} series	Specification difference
Main base unit	A1S32B	R33B	Number of I/O slots: $2 \rightarrow 3$ The base unit installation hole positions are different. An upgrade tool (base adapter) can be used. ${ }^{* 1}$
	A1S33B	R33B	The base unit installation hole positions are different. An upgrade tool (base adapter) can be used. ${ }^{* 1}$
	A1S35B	R35B	The base unit installation hole positions are different. An upgrade tool (base adapter) can be used. ${ }^{* 1}$
	A1S38B A1S38HB A1S38HBEU	R38B	The base unit installation hole positions are different. An upgrade tool (base adapter) can be used. ${ }^{* 1}$
Extension base unit (type requiring a power supply module)	A1S65B	R65B	The base unit installation hole positions are different. An upgrade tool (base adapter) can be used. ${ }^{* 1}$
	A1S68B	R68B	The base unit installation hole positions are different. An upgrade tool (base adapter) can be used. ${ }^{* 1}$
Extension base unit (type not requiring power supply module)	A1S52B	R65B	Power supply module: Not required \rightarrow Required Number of I/O slots: $2 \rightarrow 5$ The base unit installation hole positions are different.
	A1S55B	R65B	Power supply module: Not required \rightarrow Required The base unit installation hole positions are different.
	A1S58B	R68B	Power supply module: Not required \rightarrow Required The base unit installation hole positions are different. An upgrade tool (base adapter) can be used. ${ }^{* 1}$

*1 For an upgrade tool, please consult your local Mitsubishi Electric representative.

Extension cables

Item	MELSEC-AnS/ QnAS series	MELSEC iQ\mathbf{R} series	Specification difference
Extension cable	A1SC01B	RC06B	Cable length: $0.055 \mathrm{~m} \rightarrow 0.6 \mathrm{~m}$
	A1SC03B	RC06B	Cable length: $0.33 \mathrm{~m} \rightarrow 0.6 \mathrm{~m}$
	A1SC07B	RC06B	Cable length: $0.7 \mathrm{~m} \rightarrow 0.6 \mathrm{~m}$
	A1SC12B	RC12B	-
	A1SC30B	RC30B	-
	A1SC60B	RC50B	Cable length: $6.0 \mathrm{~m} \rightarrow 5.0 \mathrm{~m}{ }^{* 1}$
	A1SC05NB	RC06B	Cable length: $0.45 \mathrm{~m} \rightarrow 0.6 \mathrm{~m}$
	A1SC07NB	RC06B	Cable length: $0.7 \mathrm{~m} \rightarrow 0.6 \mathrm{~m}$
	A1SC30NB	RC30B	-
	A1SC50NB	RC50B	-

[^4]
5.2 Specification Comparison Tables

Base units

A1S32B and R33B

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S32B	R33B		
Number of mountable I/O modules	2	3	\triangle	The number of slots increases.
Extendable	Yes		\bigcirc	
Internal current consumption (5VDC)	-	0.46A	-	
Installation hole size	\$6 bell-shaped hole (for M5 screw)	M4 screw hole or $\phi 4.5$ hole (for M4 screw)	\times	Sizes and positions of the base unit installation holes are different. The upgrade tool base adapter, ERNT-ASQB32N, can be used. ${ }^{* 1}$
External dimensions	130(H) $\times 220$ (W) $\times 28$ (D) mm	101(H) $\times 189(\mathrm{~W}) \times 32.5(\mathrm{D}) \mathrm{mm}$	\times	
Weight	0.52 kg	0.31 kg	-	
Accessories	Installation screw M5 × 25 (4 screws)	Installation screw M4 $\times 14$	-	
DIN rail adapter	Not available	R6DIN1	-	

*1 By using the base adapter, the existing installation holes are reusable without rework.

A1S33B and R33B

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S33B	R33B		
Number of mountable I/O modules	3		\bigcirc	
Extendable	Yes		\bigcirc	
Internal current consumption (5VDC)	-	0.46A	-	
Installation hole size	¢6 bell-shaped hole (for M5 screw)	M4 screw hole or $\phi 4.5$ hole (for M4 screw)	\times	Sizes and positions of the base unit installation holes
External dimensions	$130(\mathrm{H}) \times 255(\mathrm{~W}) \times 28(\mathrm{D}) \mathrm{mm}$	101 (H) $\times 189$ (W) $\times 32.5$ (D) mm	\times	are different. The upgrade tool base adapter, ERNT-ASQB33N, can be used. ${ }^{* 1}$
Weight	0.65 kg	0.31 kg	-	
Accessories	Installation screw M5 × 25 (4 screws)	Installation screw M4 $\times 14$	-	
DIN rail adapter	Not available	R6DIN1	-	

*1 By using the base adapter, the existing installation holes are reusable without rework.

A1S35B and R35B

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S35B	R35B		
Number of mountable I/O modules	5		\bigcirc	
Extendable	Yes		\bigcirc	
Internal current consumption (5VDC)	-	0.58A	-	
Installation hole size	\$6 bell-shaped hole (for M5 screw)	M4 screw hole or $\phi 4.5$ hole (for M4 screw)	\times	Sizes and positions of the base unit installation holes
External dimensions	130(H) $\times 325$ (W) $\times 28$ (D) mm	101(H) $\times 245$ (W) $\times 32.5$ (D) mm	\times	are different. The upgrade tool base adapter, ERNT-ASQB35N, can be used. ${ }^{* 1}$
Weight	0.75 kg	0.41 kg	-	
Accessories	Installation screw M5 $\times 25$ (4 screws)	Installation screw M4 $\times 14$	-	
DIN rail adapter	Not available	R6DIN1	-	

*1 By using the base adapter, the existing installation holes are reusable without rework.

A1S38B/A1S38HB/A1S38HBEU and R38B

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, - : Not applicable

Item	Specifications		Compatibility	Precautions
	A1S38B/A1S38HB/ A1S38HBEU	R38B		
Number of mountable I/O modules	8			
Extendable	Yes	0.58 A	-	
Internal current consumption (5VDC)	-	M4 screw hole or $\phi 4.5$ hole (for M4 screw)	\times	Sizes and positions of the base unit installation holes are different. The upgrade tool base adapter, ERNT-ASQB38N, can be used.
Installation hole size	$\phi 6$ bell-shaped hole (for M5 screw)			

*1 By using the base adapter, the existing installation holes are reusable without rework.

A1S65B and R35B

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S65B	R65B		
Number of mountable I/O modules	5		\bigcirc	
Extendable	Yes		\bigcirc	
Internal current consumption (5VDC)	-	0.70A	-	
Installation hole size	\$6 bell-shaped hole (for M5 screw)	M4 screw hole or $\phi 4.5$ hole (for M4 screw)	\times	Sizes and positions of the base unit installation holes
External dimensions	130(H) $\times 315$ (W) $\times 28$ (D) mm	101(H) $\times 245$ (W) $\times 32.5$ (D) mm	\times	are different. The upgrade tool base adapter, ERNT-ASQB65N, can be used. ${ }^{* 1}$
Weight	0.71 kg	0.41 kg	-	
Accessories	Installation screw M5 × 25 (4 screws)	Installation screw M4 $\times 14$	-	
DIN rail adapter	Not available	R6DIN1	-	

*1 By using the base adapter, the existing installation holes are reusable without rework.

A1S68B and R68B

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, - : Not applicable

Item	Specifications		Compatibility	Precautions
	A1S68B	R68B		
Number of mountable I/O modules	8		\bigcirc	
Extendable	Yes		\bigcirc	
Internal current consumption (5VDC)	-	0.81A	-	
Installation hole size	¢6 bell-shaped hole (for M5 screw)	M4 screw hole or $\$ 4.5$ hole (for M4 screw)	\times	Sizes and positions of the base unit installation holes
External dimensions	130(H) $\times 420$ (W) $\times 28$ (D) mm	101(H) $\times 328$ (W) $\times 32.5$ (D) mm	\times	are different. The upgrade tool base adapter, ERNT-ASQB68N, can be used. ${ }^{* 1}$
Weight	0.95kg	0.55 kg	-	
Accessories	Installation screw M5 $\times 25$ (4 screws)	Installation screw M4 $\times 14$	-	
DIN rail adapter	Not available	R6DIN1	-	

*1 By using the base adapter, the existing installation holes are reusable without rework.

A1S52B and R65B

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S52B	R65B		
Number of mountable I/O modules	2	5	\triangle	The power supply module is required after replacement. The number of slots increases.
Extendable	Yes		\bigcirc	
Internal current consumption (5VDC)	-	0.70A	-	
Installation hole size	\$6 bell-shaped hole (for M5 screw)	M4 screw hole or $\$ 4.5$ hole (for M4 screw)	\times	Sizes and positions of the base unit installation holes
External dimensions	130(H) $\times 155$ (W) $\times 28$ (D) mm	101(H) $\times 245$ (W) $\times 32.5$ (D) mm	\times	fferent.
Weight	0.38 kg	0.41 kg	-	
Accessories	Dustproof cover (1) Installation screw M5 $\times 25$ (4 screws)	Installation screw M4 $\times 14$	-	
DIN rail adapter	Not available	R6DIN1	-	

A1S55B and R65B

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S55B	R65B		
Number of mountable I/O modules	5		\triangle	The power supply module is required after replacement.
Extendable	Yes		\bigcirc	
Internal current consumption (5VDC)	-	0.70A	-	
Installation hole size	¢6 bell-shaped hole (for M5 screw)	M4 screw hole or $\$ 4.5$ hole (for M4 screw)	\times	Sizes and positions of the base unit installation holes
External dimensions	130(H) $\times 260$ (W) $\times 28$ (D) mm	$101(\mathrm{H}) \times 245(\mathrm{~W}) \times 32.5(\mathrm{D}) \mathrm{mm}$	\times	are different.
Weight	0.61 kg	0.41 kg	-	
Accessories	Dustproof cover (1) Installation screw M5 $\times 25$ (4 screws)	Installation screw M4 $\times 14$	-	
DIN rail adapter	Not available	R6DIN1	-	

A1S58B and R68B

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S58B	R68B		
Number of mountable I/O modules	8		\triangle	The power supply module is required after replacement.
Extendable	Yes		\bigcirc	
Internal current consumption (5VDC)	-	0.81A	-	
Installation hole size	\$6 bell-shaped hole (for M5 screw)	M4 screw hole or $\$ 4.5$ hole (for M4 screw)	\times	Sizes and positions of the base unit installation holes
External dimensions	130(H) $\times 365$ (W) $\times 28$ (D) mm	101 (H) $\times 328$ (W) $\times 32.5$ (D) mm	\times	are different. The upgrade tool base adapter, ERNT-ASQB58N, can be used. ${ }^{* 1}$
Weight	0.87 kg	0.55 kg	-	
Accessories	Dustproof cover (1) Installation screw M5 $\times 25$ (4 screws)	Installation screw M4 $\times 14$	-	
DIN rail adapter	Not available	R6DIN1	-	

*1 By using the base adapter, the existing installation holes are reusable without rework.

Extension cables

Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Model			Compatibility	Precautions
		MELSEC-AnS/QnAS series		MELSEC iQ-R series		
		AnS main - AnS extension	AnS main - A extension			
Cable length	0.055m	A1SC01B	-	RC06B	\triangle	The cable length is changed from 0.055 m to 0.6 m .
	0.33m	A1SC03B	-	RC06B	\triangle	The cable length is changed from 0.33 m to 0.6 m .
	0.45m	-	A1SC05NB	RC06B	\triangle	The cable length is changed from 0.45 m to 0.6 m .
	0.7 m	A1SC07B	A1SC07NB	RC06B	\triangle	The cable length is changed from 0.7 m to 0.6 m .
	1.2 m	A1SC12B	-	RC12B	\bigcirc	-
	3.0 m	A1SC30B	A1SC30NB	RC30B	\bigcirc	-
	5.0 m	-	A1SC50NB	RC50B	\bigcirc	-
	6.0 m	A1SC60B	-	RC50B	\triangle	The cable length is changed from 6.0 m to 5.0 m . ${ }^{*}$

*1 If the replaced cable is not long enough, use the RC100B extension cable (cable length: 10 m). Note that the RC100B is available with base units having a 10m mark.

5.3 Precautions for Replacement

Base units

Settings of number of slots in engineering tools

In the engineering tools for the MELSEC-AnS/QnAS series, the number of slots is fixed to eight regardless of the actual number of slots on the base unit used. In the engineering tool of the MELSEC iQ-R series, however, the actual number of slots needs to be set.
When the base unit is replaced with the one having slots other than eight, set the number of slots.

Base unit installation holes

Since the installation hole sizes differ between the MELSEC iQ-R series and MELSEC-AnS/QnAS series, reworking installation holes to fix the base unit on the control panel is necessary.
By using the base adapter, the existing installation holes are reusable without rework.

Internal current consumption (5VDC)

MELSEC iQ-R series base units consume 5VDC internally as well as CPU modules and I/O modules.
When calculating the internal current consumption (5VDC) of the entire system, consider the current consumption of the base unit.

Extension cables

Overall extension cable distance

Extension cables can be used up to 20.0 m for the MELSEC iQ-R series while they can be used up to 6.0 m for the MELSECAnS/QnAS series. Select optimum cables for your system.

Cable length

The MELSEC iQ-R series main base units have one extension connector only on the left side of the unit while the MELSECAnS/QnAS series main base units have extension connectors on both sides (one extension connector on each side). (The A1SJHCPU has one extension connector only on the right side.) As the following configuration example, when a main base unit and an extension base unit are installed side by side, the cable used in the system before replacement may be not long enough. Select appropriate cables considering the layout of the base units after replacement.

- Configuration example when the base units are located side by side

Extension level setting

The extension level setting is not required in the MELSEC iQ-R series system while it needs to be configured with connector pins in the MELSEC-AnS/QnAS series system.

$$
\text { Point } \rho^{\circ}
$$

For details on these precautions, refer to the following.
LDMELSEC iQ-R Module Configuration Manual MEMORY AND BATTERY REPLACEMENT

6.1 Alternative Model List

This section lists alternative models of the MELSEC iQ-R series memory and batteries in accordance with the specifications of the MELSEC-AnS/QnAS series memory and batteries.
Select models that best suit your application considering the specifications of the MELSEC-AnS/QnAS series memory and batteries currently used.

Item	MELSEC-AnS/QnAS series	MELSEC iQ-R series	Specification difference
Memory cassette	A1SNMCA-2KE	Not required	The RCPU is equipped with built-in program memory. Use SD memory cards and extended SRAM cassettes as required.
	A1SNMCA-8KE		
	A2SNMCA-30KE		
	A1SNMCA-8KP		
Memory card	Q1MEM-64S	Not required	Use SD memory cards and extended SRAM cassettes as required.
	Q1MEM-128S		
	Q1MEM-256S		
	Q1MEM-512S		
	Q1MEM-1MS		
	Q1MEM-2MS		
	Q1MEM-64SE		
	Q1MEM-128SE		
	Q1MEM-256SE		
	Q1MEM-512SE		
	Q1MEM-1MSE		
$\text { Battery }{ }^{* 1 * 2}$	A6BAT	Q6BAT	-
	A8BAT	Q7BAT Q7BATN	
	A10BAT		

*1 The R00CPU, R01CPU, and R02CPU do not require a battery. However, purchase the coin battery (FX3U-32BL) if retaining the clock data for more than 10 days is required. The clock data for five years can be retained.
*2 For the R04CPU and R08CPU, the battery-less option cassette (NZ1BLC) eliminates the need for batteries. However, the clock data is no longer retained without a battery.

6.2 Precautions for Replacement

Extended SRAM cassette

When there is not enough space on the standard RAM after replacement, for example, when multiple blocks of extended file register has been used, consider using an extended SRAM cassette.

Battery

Replace the MELSEC-A series batteries (A6BAT, A8BAT and A10BAT) with the MELSEC iQ-R series batteries (Q6BAT, Q7BAT, and Q7BATN). (The R00CPU, R01CPU, and R02CPU do not require a battery. The R04CPU and R08CPU include a Q6BAT battery as standard equipment.)
The battery life varies depending on operating conditions. For details, refer to the MELSEC iQ-R Module Configuration Manual.

For details on these precautions, refer to the following.
LDMELSEC iQ-R Module Configuration Manual
[]MELSEC iQ-R CPU Module User's Manual (Startup)

7.1 Alternative Model List

This section lists alternative models of the MELSEC iQ-R series analog I/O modules in accordance with the specifications and functions of the MELSEC-AnS/QnAS series analog I/O modules.
Select models that best suit your application considering the scope of control of MELSEC-AnS/QnAS series analog I/O modules currently used, as well as the system specifications and extensibility after replacement.

Item	MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Specification difference
Analog input module	A1S64AD	R60AD4	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed, resolution (digital output value range) is changed. (4) Specifications: Input signals (minus current not applicable), I/O characteristics are changed, resolution is changed, conversion speed is changed. (5) Functions: Not changed
	A1S68AD	R60ADV8 R60ADI8	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed, resolution (digital output value range) is changed. (4) Specifications: Input signals (either V or I input), I/O characteristics are changed, resolution is changed, conversion speed is changed. (5) Functions: Not changed
		R60AD8-G	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed, resolution (digital output value range) is changed. (4) Specifications: I/O characteristics are changed, resolution is changed, conversion speed is changed, Isolation method is changed. (5) Functions: Not changed
Analog output module	A1S62DA	R60DA4	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed, resolution (digital output value range) is changed. (4) Specifications: I/O characteristics are changed, resolution is changed, conversion speed is changed, use of external power supply is changed (Not required \rightarrow Required). (5) Functions: Not changed
	A1S68DAV	R60DAV8	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed, resolution (digital output value range) is changed. (4) Specifications: I/O characteristics are changed, resolution is changed, conversion speed is changed, use of external power supply is changed (Not required \rightarrow Required). (5) Functions: Not changed
	A1S68DAI	R60DAI8	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed, resolution (digital output value range) is changed. (4) Specifications: I/O characteristics are changed, resolution is changed, conversion speed is changed, use of external power supply is changed (Not required \rightarrow Required). (5) Functions: Not changed
Analog I/O module	A1S63ADA	None	Consider using the R60AD4 and R60DA4.
	A1S66ADA	None	

Item	MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Specification difference
Temperature input module	A1S68TD	R60TD8-G	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed. (4) Specifications: Output (scaling value) is changed, applicable thermocouples are changed, conversion speed is changed. (5) Functions: Not changed
	A1S62RD3N	R60RD8-G	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed. (4) Specifications: Applicable RTDs are added (Ni100 and Pt50), conversion speed is changed, resolution is changed. (5) Functions: Changed (32-bit output not available, transformer between channels)
	A1S62RD4N	None	-
Heating-cooling temperature control/ Temperature control module	A1S64TCTRT (Thermocouple)	R60TCTRT2TT2	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed. (4) Specifications: Applicable temperature sensors are changed. (5) Functions: Changed
	A1S64TCTRT (Platinum resistance thermometer)	R60TCRT4	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed. (4) Specifications: Applicable temperature sensors are changed. (5) Functions: Changed
	A1S64TCTRTBW (Thermocouple)	R60TCTRT2TT2B w	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed. (4) Specifications: Applicable temperature sensors are changed. (5) Functions: Changed
	A1S64TCTRTBW (Platinum resistance thermometer)	R60TCRT4BW	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed. (4) Specifications: Applicable temperature sensors are changed. (5) Functions: Changed
	A1S64TCTT-S1	R60TCTRT2TT2	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed. (4) Specifications: Applicable temperature sensors are changed. (5) Functions: Changed
	A1S64TCTTBW-S1	R60TCTRT2TT2B W	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 1}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed. (4) Specifications: Applicable temperature sensors are changed. (5) Functions: Changed

Item	MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Specification difference
Heating-cooling temperature control/ Temperature control module	A1S64TCRT-S1	R60TCRT4	(1) External wiring: Changed (An upgrade tool conversion adapter can be used. ${ }^{* 11}$) (2) Number of slots: Not changed (3) Programs: The number of occupied I/O points is changed, I/O signals are changed, buffer memory addresses are changed. (4) Specifications: Applicable temperature sensors are changed.
(5) Functions: Changed			

[^5]
7.2 Specification Comparison Tables

Analog input modules

A1S64AD and R60AD4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S64AD	R60AD4		
Number of analog input channels	4 channels		\bigcirc	
Analog input voltage	-10 to +10VDC (input resistance: $1 \mathrm{M} \Omega$)	-10 to 10VDC (input resistance: $1 \mathrm{M} \Omega$)	\triangle	A minus current cannot be used.
Analog input current	-20 to +20 mADC (input resistance 250 ()	0 to 20 mADC (input resistance 250 ()		
Digital output value	16-bit signed binary When $1 / 4000$ is set: -4096 to +4095 When $1 / 8000$ is set: -8192 to +8191 When $1 / 12000$ is set: -12288 to +12287	16-bit signed binary: -32768 to 32767	\triangle	Use the scaling function to convert values to the same range as the A1S64AD. Converted values are stored in the buffer memory area 'Digital operation value'.
I/O characteristics, resolution	*1	*2	\triangle	Use the scaling function to convert values to the same range as the A1S64AD. Converted values are stored in the buffer memory area 'Digital operation value'.
Overall accuracy (accuracy to maximum digital output value)	$\pm 1 \%$ When $1 / 4000$ is set: ± 40 digit When $1 / 8000$ is set: ± 80 digit When $1 / 12000$ is set: ± 120 digit	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: Within $\pm 0.1 \%$ (± 32 digit) Ambient temperature 0 to $55^{\circ} \mathrm{C}$: Within $\pm 0.3 \%$ (± 96 digit)	\bigcirc	
Conversion speed	$20 \mathrm{~ms} /$ channel	80 $\mu \mathrm{s} /$ channel	\bigcirc	Comparing with the A1S64AD, the conversion speed of the R60AD4 is faster. Therefore, for the R60ADV8/ R60ADI8, some noise may be taken in as analog signals, which is not the case with the A1S64AD. In this case, use the averaging processing function to eliminate noise effect.
Absolute maximum input	Voltage: $\pm 15 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$	Voltage: $\pm 15 \mathrm{~V}$, Current: 30 mA	\bigcirc	
Number of writes of offset/gain values	-	50000 times maximum	-	
Isolation method	Between the I/O terminal and programmable controller power supply: Photocoupler Between input channels: Non-isolation		\bigcirc	
Withstand voltage	Between the I/O terminal and programmable controller power supply: 500VAC for 1 minute		\bigcirc	
Insulation resistance	Between the I/O terminal and programmable controller power supply: $500 \mathrm{VDC} 5 \mathrm{M} \Omega$ or more	Between the I/O terminal and programmable controller power supply: $500 \mathrm{VDC} 10 \mathrm{M} \Omega$ or more	\bigcirc	
External interface	20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 screws)	\times	Wiring needs to be changed after replacement.
Applicable wire size	0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	By using the upgrade tool
Applicable solderless terminal	$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	ASQT64AD), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Number of occupied I/O points	32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.

Item	Specifications		Compatibility	Precautions
	A1S64AD	R60AD4		
Internal current consumption (5VDC)	0.40 A	0.22 A	-	
External dimensions	$130(\mathrm{H}) \times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	$106(\mathrm{H}) \times 27.8(\mathrm{~W}) \times 131(\mathrm{D}) \mathrm{mm}$	-	
Weight	0.25 kg	0.12 kg	-	

*1 The following table lists the I/O characteristics and maximum resolution values of the A1S64AD.
When a gain value is $5 \mathrm{~V} / 20 \mathrm{~mA}$ and an offset value is $0 \mathrm{~V} / 0 \mathrm{~mA}$

Analog input value	Digital output value		Maximum resolution		
	When $\mathbf{1 / 4 0 0 0}$ is set	When $\mathbf{1 / 8 0 0 0}$ is set	When $\mathbf{1 / 1 2 0 0 0}$ is set	Voltage	Current
+10 V	+4000	+8000	+12000	$1 / 4000: 2.5 \mathrm{mV}$	$1 / 4000: 10 \mu \mathrm{~A}$
+5 V or +20 mA	+2000	+4000	+6000	$1 / 8000: 1.25 \mathrm{mV}$	$1 / 8000: 5 \mu \mathrm{~A}$
0 V or 0 mA	0	0	0	$1 / 12000: 0.83 \mathrm{mV}$	$1 / 12000: 3.33 \mu \mathrm{~A}$
-5 V or -20 mA	-2000	-4000	-6000		
-10 V	-4000	-12000			

*2 The following table lists the I/O characteristics and maximum resolution values of the R60AD4.

Analog input range		Digital output value	Resolution
Voltage	0 to 10V	0 to 32000	$312.5 \mu \mathrm{~V}$
	0 to 5V		$156.3 \mu \mathrm{~V}$
	1 to 5 V		$125.0 \mu \mathrm{~V}$
	1 to 5V (extended mode)	-8000 to 32000	$125.0 \mu \mathrm{~V}$
	-10 to 10V	-32000 to 32000	$312.5 \mu \mathrm{~V}$
	User range setting		$47.7 \mu \mathrm{~V}$
Current	0 to 20 mA	0 to 32000	625.0 nA
	4 to 20 mA		500.0nA
	4 to 20 mA (extended mode)	-8000 to 32000	500.0 nA
	User range setting	-32000 to 32000	190.7nA

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S68AD and R60ADV8/R60ADI8

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S68AD	R60ADV8/R60ADI8		
Number of analog input channels	8 channels		\bigcirc	
Analog input voltage	$\begin{aligned} & -10 \text { to }+10 \mathrm{VDC} \text { (input resistance: } \\ & 1 \mathrm{M} \Omega \text {) } \end{aligned}$	R60ADV8: -10 to 10VDC (input resistance: $1 \mathrm{M} \Omega$) R60ADI8: -	\triangle	Use either voltage input or current input for one module.
Analog input current	0 to +20 mADC (input resistance 250 ()	R60ADV8: - R60ADI8: 0 to 20mADC (input resistance 250Ω)		
Digital output value	16-bit signed binary: 0 to 4000, -2000 to 2000	16-bit signed binary: -32768 to 32767	\triangle	Use the scaling function to convert values to the same range as the A1S68AD. Converted values are stored in the buffer memory area 'Digital operation value'.
I/O characteristics, resolution	*1	*2	\triangle	Use the scaling function to convert values to the same range as the A1S68AD. Converted values are stored in the buffer memory area 'Digital operation value'.
Overall accuracy (accuracy to maximum digital output value)	Within $\pm 1 \%$ at full scale (Digital output value: ± 40)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: Within $\pm 0.1 \%$ (± 32 digit) Ambient temperature 0 to $55^{\circ} \mathrm{C}$: Within $\pm 0.3 \%$ (± 96 digit)	\bigcirc	
Conversion speed	$0.5 \mathrm{~ms} /$ channel (The speed is $1 \mathrm{~ms} /$ channel on all channels if averaging processing is set even for one channel.)	$80 \mu \mathrm{~s} /$ channel	\bigcirc	Comparing with the A1S68AD, the conversion speed of the R60ADV8/R60ADI8 is faster. Therefore, for the R60ADV8/ R60ADI8, some noise may be taken in as analog signals, which is not the case with the A1S68AD. In this case, use the averaging processing function to eliminate noise effect.
Absolute maximum input	Voltage: $\pm 35 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$	R60ADV8: Voltage: $\pm 15 \mathrm{~V}$ R60ADI8: Current: 30mA	\bigcirc	
Number of writes of offset/gain values	-	50000 times maximum	-	
Isolation method	Between the I/O terminal and programmable controller power supply: Photocoupler Between input channels: Non-isolation		\bigcirc	
External interface	20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASQT68AD), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size	0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal	$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	
Number of occupied I/O points	32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)	0.4A	R60ADV8: 0.23A R60ADI8: 0.22A	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	106(H) $\times 27.8(\mathrm{~W}) \times 131$ (D) mm	-	
Weight	0.27 kg	0.12 kg	-	

*1 The following table lists the I/O characteristics and maximum resolution values of the A1S68AD.
\(\left.$$
\begin{array}{l|l|l}\hline \text { Analog input value } & \text { Digital output value } & \text { Maximum resolution } \\
\hline 0 \text { to }+10 \mathrm{~V} & 0 \text { to }+400 & 2.5 \mathrm{mV} \\
\hline-10 \text { to }+10 \mathrm{~V} & -2000 \text { to }+2000 & 5 \mathrm{mV} \\
\hline 0 \text { to } 5 \mathrm{~V} \text { or } 0 \text { to } 20 \mathrm{~mA} & 0 \text { to }+4000 & \begin{array}{l}0 \text { to } 5 \mathrm{~V}: 1.25 \mathrm{mV} \\
0\end{array}
$$

\hline 1 to 20 \mathrm{~mA}: 5 \mu \mathrm{~A}\end{array}\right]\)| 1 to $5 \mathrm{~V}: 1 \mathrm{mV}$ |
| :--- |
| 4 to $20 \mathrm{~mA}: 4 \mu \mathrm{~A}$ |

*2 The following tables list the I/O characteristics and maximum resolution values of the R60ADV8/R60ADI8.

R60ADV8

Analog input range		Digital output value	Resolution
Voltage	0 to 10V	0 to 32000	$312.5 \mu \mathrm{~V}$
	0 to 5V		$156.3 \mu \mathrm{~V}$
	1 to 5V		$125.0 \mu \mathrm{~V}$
	1 to 5V (extended mode)	-8000 to 32000	$125.0 \mu \mathrm{~V}$
	-10 to 10V	-32000 to 32000	$312.5 \mu \mathrm{~V}$
	User range setting		$47.7 \mu \mathrm{~V}$

R60ADI8

Analog input range		Digital output value	Resolution
Current	0 to 20 mA	0 to 32000	625.0 nA
	4 to 20 mA	500.0 nA	
	4 to 20 mA (extended mode)	-8000 to 32000	500.0 nA
	User range setting	-32000 to 32000	190.7 nA

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S68AD and R60AD8-G

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S68AD	R60AD8-G		
Number of analog input channels	8 channels		\bigcirc	
Analog input voltage	-10 to +10VDC (input resistance: $1 \mathrm{M} \Omega$)		\bigcirc	
Analog input current	0 to +20mADC (input resistance 250 2)		\bigcirc	
Digital output value	16-bit signed binary: 0 to 4000, -2000 to 2000	16-bit signed binary: -32768 to 32767	\triangle	Use the scaling function to convert values to the same range as the A1S68AD. Converted values are stored in the buffer memory area 'Digital operation value'.
I/O characteristics, resolution	*1	*2	\triangle	Use the scaling function to convert values to the same range as the A1S68AD. Converted values are stored in the buffer memory area 'Digital operation value'.
Overall accuracy (accuracy to maximum digital output value)	Within $\pm 1 \%$ at full scale (Digital output value: ± 40)	Reference accuracy: Within $\pm 0.1 \%$ (± 32 digit) Temperature coefficient: $\pm 35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\left(0.0035 \% /{ }^{\circ} \mathrm{C}\right)$	\bigcirc	
Conversion speed	$0.5 \mathrm{~ms} /$ channel (The speed is $1 \mathrm{~ms} /$ channel on all channels if averaging processing is set even for one channel.)	10ms/channel	\triangle	The conversion speed of the R60AD8-G is slower.
Absolute maximum input	Voltage: $\pm 35 \mathrm{~V}$, Current: $\pm 30 \mathrm{~mA}$	Voltage: $\pm 15 \mathrm{~V}$, Current: 30 mA	\bigcirc	
Number of writes of offset/gain values	-	50000 times maximum	-	
Isolation method	Between the I/O terminal and programmable controller power supply: Photocoupler Between input channels: Nonisolation	Between the I/O terminal and programmable controller power supply: Transformer Between analog input channels: Transformer	\triangle	The isolation methods are different before and after replacement.
External interface	20-point terminal block (M3.5 $\times 7$ screws)	40-pin connector (A6CON1/2/4)	\times	Wiring needs to be changed after replacement.
Applicable wire size	0.75 to $1.5 \mathrm{~mm}^{2}$	0.088 to $0.3 \mathrm{~mm}^{2}$	\times	By using the upgrade tool
Applicable solderless terminal	$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	-	-	conversion adapter (ERNT2AR68AG), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Number of occupied I/O points	32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)	0.4A	0.33A	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8(\mathrm{~W}) \times 110$ (D) mm	-	
Weight	0.27 kg	0.19 kg	-	

*1 The following table lists the I/O characteristics and maximum resolution values of the A1S68AD.

Analog input value	Digital output value	Maximum resolution
0 to +10 V	0 to +400	2.5 mV
-10 to +10 V	-2000 to +2000	5 mV
0 to 5 V or 0 to 20 mA	0 to $5 \mathrm{~V}: 1.25 \mathrm{mV}$	
	0 to +4000	1 to $20 \mathrm{~mA}: 5 \mu \mathrm{~A}$
1 to 5 V or 4 to 20 mA	1 to $5 \mathrm{~V}: 1 \mathrm{mV}$	
4 to $20 \mathrm{~mA}: 4 \mu \mathrm{~A}$		

*2 The following table lists the I/O characteristics and maximum resolution values of the R60AD8-G.

Analog input range		Digital output value	Resolution
Voltage	0 to 10V	0 to 32000	$312.5 \mu \mathrm{~V}$
	0 to 5 V		$156.3 \mu \mathrm{~V}$
	1 to 5 V		$125.0 \mu \mathrm{~V}$
	1 to 5V (extended mode)	-8000 to 32767 (-8000 to 36000)	$125.0 \mu \mathrm{~V}$
	-10 to 10V	-32000 to 32000	$312.5 \mu \mathrm{~V}$
	User range setting		$29.2 \mu \mathrm{~V}$
Current	0 to 20 mA	0 to 32000	625.0nA
	4 to 20 mA		500.0nA
	4 to 20 mA (extended mode)	-8000 to 32767 (-8000 to 36000)	500.0nA
	User range setting	-32000 to 32000	115.5nA

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

Analog output modules

A1S62DA and R60DA4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S62DA	R60DA4		
Number of analog output channels	2 channels	4 channels	\bigcirc	
Digital input	Voltage: -4000 to 4000, -8000 to 8000, $\text { -12000 to } 12000$ Current: 0 to 4000, 0 to 8000, 0 to 12000	16-bit signed binary: -32768 to 32767	\triangle	Use the scaling function to convert values to the same range as the A1S62DA.
Analog output	Voltage: -10 to 0 to +10VDC (external load resistance value: 2 k to $1 \mathrm{M} \Omega$) Current: 0 to 20mADC (External load resistance value: 0 to 600Ω)	Voltage: -10 to 10VDC (external load resistance value: $1 \mathrm{k} \Omega$ or more), 0 to 5VDC (external load resistance value: 500Ω or more) Current: 0 to 20mADC (External load resistance value: 0 to 600Ω)	\bigcirc	
I/O characteristics, resolution	*1	*2	\triangle	Use the scaling function to convert values to the same range as the A1S62DA.
Overall accuracy (accuracy to maximum analog output value)	$\begin{aligned} & \pm 1 \% \text { (voltage: } \pm 100 \mathrm{mV} \text {, current: } \\ & \pm 200 \mu \mathrm{~A} \text {) } \end{aligned}$	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: Within $\pm 0.1 \%$ (voltage: $\pm 20 \mathrm{mV}$, current: $\pm 20 \mu \mathrm{~A}$) Ambient temperature 0 to $55^{\circ} \mathrm{C}$: Within $\pm 0.3 \%$ (voltage: $\pm 30 \mathrm{mV}$, current: $\pm 60 \mu \mathrm{~A}$)	\bigcirc	
Conversion speed	Up to $25 \mathrm{~ms} / 2$ channels (the same duration even for 1 channel)	$80 \mu \mathrm{~s} /$ channel	\bigcirc	
Absolute maximum output	Voltage: $\pm 12 \mathrm{~V}$, Current: $\pm 28 \mathrm{~mA}$	-	-	
Number of writes of offset/gain values	-	50000 times maximum	-	
Output short circuit protection	Available		\bigcirc	
Isolation method	Between the I/O terminal and programmable controller power supply: Photocoupler Between output channels: Non-isolation		\bigcirc	
External power supply	-	Voltage: 24VDC $+20 \%,-15 \%$ Ripple, spike 500 mVp -p or less Inrush current: 5.0A, within 690 $\mu \mathrm{s}$ Current consumption: 0.14A	\times	A 24VDC external power supply is required.
External interface	20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 screws)	\times	Wiring needs to be changed after replacement.
Applicable wire size	0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	By using the upgrade tool
Applicable solderless terminal	$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	ASQT62DA), the existing external wiring and terminal blocks in the existing system can be used. *3
Number of occupied I/O points	32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)	0.8A	0.16A	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight	0.32 kg	0.14 kg	-	

*1 The following table lists the I/O characteristics and maximum resolution values of the A1S62DA.
Voltage output: The offset value is set to 0 V and the gain value is set to 10 V (factory default setting).
Current output: The offset value is set to 4 mA and the gain value is set to 20 mA .

Analog output value			Digital input value		Maximum resolution
Voltage output value	Current output value	$\mathbf{1 / 4 0 0 0}$	$\mathbf{1 / 8 0 0 0}$	$\mathbf{1 / 1 2 0 0 0}$	
10 V	20 mA	4000	8000	12000	$1 / 4000: 2.5 \mathrm{mV}(10 \mathrm{~V}), 5 \mu \mathrm{~A}(20 \mathrm{~mA})$
5 V	12 mA	2000	4000	6000	$1 / 8000: 1.25 \mathrm{mV}(10 \mathrm{~V}), 2.5 \mu \mathrm{~A}(20 \mathrm{~mA})$
0 V	4 mA	0	0	0	$1 / 12000: 0.83 \mathrm{mV}(10 \mathrm{~V}), 1.7 \mu \mathrm{~A}(20 \mathrm{~mA})$
-5 V	-	-2000	-4000	-6000	
-10 V	-	-8000	-12000		

*2 The following table lists the I/O characteristics and maximum resolution values of the R60DA4.

| Analog output range | | Digital input value | Resolution |
| :--- | :--- | :--- | :--- | :--- |
| Voltage | 0 to 5 V | 0 to 32000 | $156.3 \mu \mathrm{~V}$ |
| | 1 to 5 V | | $125.0 \mu \mathrm{~V}$ |
| | -10 to 10 V | -32000 to 32000 | $312.5 \mu \mathrm{~V}$ |
| | User range setting | | $312.5 \mu \mathrm{~V}$ |
| Current | 0 to 20 mA | to 32000 | 625.0 nA |
| | 4 to 20 mA | 500.0 nA | |
| | User range setting | -32000 to 32000 | 350.9 nA |

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S68DAV and R60DAV8

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S68DAV	R60DAV8		
Number of analog output channels	8 channels		\bigcirc	
Digital input	16-bit signed binary: -2048 to 2047	16-bit signed binary: -32768 to 32767	\triangle	Use the scaling function to convert values to the same range as the A1S68DAV.
Analog output	$-10 \text { to }+10 \mathrm{VDC}$ (External load resistance value: 2 k to $1 \mathrm{M} \Omega$)	-10 to 10VDC (External load resistance value: $1 \mathrm{k} \Omega$ or more) 0 to 5VDC (External load resistance value: 500Ω or more)	\bigcirc	
I/O characteristics, resolution	*1	*2	\triangle	Use the scaling function to convert values to the same range as the A1S68DAV.
Overall accuracy (accuracy to maximum analog output value)	$\pm 1.0 \%$ ($\pm 100 \mathrm{mV}$)	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: Within $\pm 0.1 \%$ ($\pm 10 \mathrm{mV}$) Ambient temperature 0 to $55^{\circ} \mathrm{C}$: Within $\pm 0.3 \%(\pm 30 \mathrm{mV})$	\bigcirc	
Conversion speed	Up to $4 \mathrm{~ms} / 8$ channels If the frequency of access from the programmable controller CPU using the FROM/TO instructions is high, the speed may be increased for about 6 ms .	80 μ s/channel	\bigcirc	
Absolute maximum output	-	-	-	
Number of writes of offset/gain values	-	50000 times maximum	-	
Output short circuit protection	Available		\bigcirc	
Isolation method	Between the I/O terminal and programmable controller power supply: Photocoupler Between output channels: Non-isolation		\bigcirc	
External power supply	-	Voltage: 24VDC +20\%, -15\% Ripple, spike 500 mVp -p or less Inrush current: 5.0A, within 670 $\mu \mathrm{s}$ Current consumption: 0.16A	\times	A 24VDC external power supply is required.
External interface	20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 screws)	\times	Wiring needs to be changed after replacement.
Applicable wire size	0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	By using the upgrade tool conversion adapter (ERNT-
Applicable solderless terminal	$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	ASQT68DA), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}$
Number of occupied I/O points	32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)	0.65A	0.16A	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8(\mathrm{~W}) \times 131$ (D) mm	-	
Weight	0.22 kg	0.14 kg	-	

*1 The following table lists the I/O characteristics and maximum resolution values of the A1S68DAV.

Analog output value	Digital input value	Maximum resolution
-10 to 10 V	-2000 to 2000	5 mV

*2 The following table lists the I/O characteristics and maximum resolution values of the R60DAV8.

Analog output range		Digital input value	Resolution
Voltage	0 to 5 V	0 to 32000	$156.3 \mu \mathrm{~V}$
	1 to 5 V		$125.0 \mu \mathrm{~V}$
	-10 to 10 V	-32000 to 32000	$312.5 \mu \mathrm{~V}$
	User range setting		$312.5 \mu \mathrm{~V}$

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S68DAI and R60DAI8

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1S68DAI	R60DAI8		
Number of analog output channels	8 channels		\bigcirc	
Digital input	16-bit signed binary: 0 to 4096	16-bit signed binary: -32768 to 32767	\triangle	Use the scaling function to convert values to the same range as the A1S68DAI.
Analog output	4 to 20 mADC (External load resistance value: 0 to 600 ()	0 to 20 mADC (External load resistance value: 0 to 600 ()	\bigcirc	
I/O characteristics, resolution	*1	*2	\triangle	Use the scaling function to convert values to the same range as the A1S68DAI.
Overall accuracy (accuracy to maximum analog output value)	$\pm 1.0 \%(\pm 200 \mu \mathrm{~A})$	Ambient temperature $25 \pm 5^{\circ} \mathrm{C}$: Within $\pm 0.1 \%(\pm 20 \mu \mathrm{~A})$ Ambient temperature 0 to $55^{\circ} \mathrm{C}$: Within $\pm 0.3 \%(\pm 60 \mu \mathrm{~A})$	\bigcirc	
Conversion speed	Up to $4 \mathrm{~ms} / 8$ channels If the frequency of access from the programmable controller CPU using the FROM/TO instructions is high, the speed may be increased for about 6 ms .	80 $\mu \mathrm{s} /$ channel	\bigcirc	
Absolute maximum output	-	-	-	
Number of writes of offset/ gain values	-	50000 times maximum	-	
Output short circuit protection	Available		\bigcirc	
Isolation method	Between the I/O terminal and programmable controller power supply: Photocoupler Between output channels: Non-isolation		\bigcirc	
External power supply	-	Voltage: 24VDC +20\%, -15\% Ripple, spike 500 mVp -p or less Inrush current: 5.0A, within $700 \mu \mathrm{~s}$ Current consumption: 0.26A	\times	A 24VDC external power supply is required.
External interface	20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 screws)	\times	Wiring needs to be changed after replacement.
Applicable wire size	0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	By using the upgrade tool
Applicable solderless terminal	$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	\times	ASQT68DA), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Number of occupied I/O points	32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)	0.85A	0.16A	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight	0.22 kg	0.14 kg	-	

*1 The following table lists the I/O characteristics and maximum resolution values of the A1S68DAI.

Analog output value	Digital input value	Maximum resolution
4 to 20 mA	0 to 4000	$4 \mu \mathrm{~A}$

*2 The following table lists the I/O characteristics and maximum resolution values of the R60DAI8.

Analog output range		Digital input value	Resolution
Current	0 to 20 mA	0 to 32000	625.0 nV
	4 to 20 mA		500.0 nV
	User range setting	-32000 to 32000	350.9 nV

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

Temperature input modules

A1S68TD and R60TD8-G

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S68TD	R60TD8-G		
Number of analog input channels		8 channels + Cold junction compensation channels/1 module		\bigcirc	
Temperature sensor input		0 to $1700^{\circ} \mathrm{C}$	-270 to $1820^{\circ} \mathrm{C}$	\bigcirc	
Output	Detected temperature value	16-bit signed binary: 0 to 17000	16-bit signed binary: -2700 to 18200	\bigcirc	
	Scaling value	16-bit signed binary: 0 to 2000	16-bit signed binary: 0 to 100\%	\triangle	The concept of scaling value differs.
Applicable thermocouple		JIS C 1602:1981	JIS C 1602:1995, IEC 60584- 1:1995, IEC 60584-2:1982)	\triangle	Applicable thermocouples and thermocouple compliance standards vary between the A1S68TD and the R60TD8-G.
Accuracy		(Conversion accuracy) + (Temperature characteristics) \times (Operating ambient temperature variation) + (Cold junction compensation accuracy)		\bigcirc	
Conversion speed		$400 \mathrm{~ms} / 8$ channels	$30 \mathrm{~ms} /$ channel	\bigcirc	
Isolation method		Between thermocouple input channel and programmable controller power supply: Transformer Between thermocouple input channels: Transformer Between cold junction compensation channel and programmable controller power supply: Non-isolation		\bigcirc	
Withstand voltage		Between thermocouple input channel and programmable controller power supply: 500VAC for 1 minute Between thermocouple input channels: 500VAC for 1 minute	Between thermocouple input channel and programmable controller power supply: 500VAC rms for 1 minute Between thermocouple input channels: 1000VAC rms for 1 minute	\bigcirc	
Insulation resistance		Between thermocouple input channel and programmable controller power supply: 500VAC $5 \mathrm{M} \Omega$ or more Between thermocouple input channels: $500 \mathrm{VDC} 5 \mathrm{M} \Omega$ or more	Between thermocouple input channel and programmable controller power supply: 500VAC $10 \mathrm{M} \Omega$ or more Between thermocouple input channels: $500 \mathrm{VDC} 10 \mathrm{M} \Omega$ or more	\bigcirc	
Disconnection detection		Available		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	40-pin connector (A6CON1/2/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR68TD), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 1}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.088 to $0.3 \mathrm{~mm}^{2}$	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	-	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)		0.32A	0.36A	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.28 kg	0.19 kg	-	

*1 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S62RD3N and R60RD8-G

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S62RD3N	R60RD8-G		
Number of analog input channels		2 channels	8 channels	\bigcirc	
Measurement method		3-wire type		\bigcirc	
Output (temperature conversion value)		16-bit signed binary: -1800 to 6000 32-bit signed binary: -180000 to 600000	16-bit signed binary: $-2000 \text { to } 8500$	\triangle	32-bit output cannot be used.
Applicable RTD		Pt100 (JIS C 1604:1997, IEC 751am2, JIS C 1604:1989, DIN 437601980), JPt100 (JIS C 1604:1981)	Pt100 (JIS C 1604:2013, IEC 751:1983) JPt100 (JIS C 1604:1981) Ni100 (DIN 43760 1987) Pt50 (JIS C 1604:1981)	\triangle	Applicable RTDs and RTD compliance standards vary between the A68RD3N and the R60RD8-G.
Temperature measurement range	Pt100	-180 to $600^{\circ} \mathrm{C}$ (27.10 to $\left.313.71 \Omega\right)$	-200 to $850^{\circ} \mathrm{C}$	\bigcirc	
	JPt100	-180 to $600^{\circ} \mathrm{C}$ (25.80 to 317.28Ω)	-180 to $600^{\circ} \mathrm{C}$		
	Ni100	-	-60 to $250^{\circ} \mathrm{C}$		
	Pt50	-	-200 to $650^{\circ} \mathrm{C}$		
Temperature detecting output current		1.0 mA	1.0 mA or lower	\bigcirc	
Accuracy		$\pm 1 \%$ (accuracy to full-scale)	*1	\bigcirc	
Resolution		$0.025^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$	\triangle	Comparing with the A68RD3N, the resolution for the R60RD8-G is lower.
Conversion speed		$40 \mathrm{~ms} /$ channel	10ms/channel	\bigcirc	
Isolation method		Between the platinum resistance thermometer input and programmable controller power supply: Photocoupler Between the platinum resistance thermometer input and channel: Non-isolation	Between RTD input channel and programmable controller power supply: Transformer Between RTD input channels: Transformer	\bigcirc	
Withstand voltage		Between the platinum resistance thermometer input and programmable controller power supply: 500VAC for 1 minute	Between RTD input channel and programmable controller power supply: 500VAC rms for 1 minute Between RTD input channels: 1000VAC rms for 1 minute	\bigcirc	
Disconnection detection		Available		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	40-pin connector (A6CON1/2/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR62RD), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.088 to $0.3 \mathrm{~mm}^{2}$	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	-	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)		0.49A	0.35A	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D)mm	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight		0.27 kg	0.19 kg	-	

*1 The following table lists the accuracy of the R60RD8-G.

Item		Specifications
$\mathrm{Pt100}$	-200 to $850^{\circ} \mathrm{C}$	$\pm 0.8^{\circ} \mathrm{C}$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$), $\pm 2.4^{\circ} \mathrm{C}$ (Ambient temperature: 0 to $55^{\circ} \mathrm{C}$)
	-20 to $120^{\circ} \mathrm{C}$	$\pm 0.3^{\circ} \mathrm{C}$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$), $\pm 1.1^{\circ} \mathrm{C}$ (Ambient temperature: 0 to $55^{\circ} \mathrm{C}$)
	0 to $200^{\circ} \mathrm{C}$	$\pm 0.4^{\circ} \mathrm{C}$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$), $\pm 1.2^{\circ} \mathrm{C}$ (Ambient temperature: 0 to $55^{\circ} \mathrm{C}$)
$\mathrm{JPt100}$	-180 to $600^{\circ} \mathrm{C}$	$\pm 0.8^{\circ} \mathrm{C}$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$), $\pm 2.4^{\circ} \mathrm{C}$ (Ambient temperature: 0 to $55^{\circ} \mathrm{C}$)
	-20 to $120^{\circ} \mathrm{C}$	$\pm 0.3^{\circ} \mathrm{C}$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$), $\pm 1.1^{\circ} \mathrm{C}$ (Ambient temperature: 0 to $55^{\circ} \mathrm{C}$)
	0 to $200^{\circ} \mathrm{C}$	$\pm 0.4^{\circ} \mathrm{C}$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$), $\pm 1.2^{\circ} \mathrm{C}$ (Ambient temperature: 0 to $55^{\circ} \mathrm{C}$)
Ni100	-60 to $250^{\circ} \mathrm{C}$	$\pm 0.4^{\circ} \mathrm{C}$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$), $\pm 1.2^{\circ} \mathrm{C}$ (Ambient temperature: 0 to $55^{\circ} \mathrm{C}$)
$\mathrm{Pt50}$	-200 to $650^{\circ} \mathrm{C}$	$\pm 0.8^{\circ} \mathrm{C}$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$), $\pm 2.4^{\circ} \mathrm{C}$ (Ambient temperature: 0 to $55^{\circ} \mathrm{C}$)

*2 For an upgrade tool, please consult your local Mitsubishi Electric representative.

Heating-cooling temperature control/Temperature control modules

A1S64TCTRT (when thermocouple is used) and R60TCTRT2TT2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item

Item		Specifications		Compatibility	Precautions
		A1S64TCTRT	R60TCTRT2TT2		
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	$0.4 \mathrm{~A}, 10 \mathrm{~ms}$		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to $\mathrm{E}^{2} \mathrm{PROM}$		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	
Withstand voltage		Between input terminal and programmable controller power supply: 500VAC for 1 minute Between input channels: 500VAC for 1 minute		\bigcirc	
Insulation resistance		Between input terminal and programmable controller power supply: 500VDC, $10 \mathrm{M} \Omega$ or more Between input channels: 500VDC 10M Ω or more	Between input terminal and programmable controller power supply: $500 \mathrm{VDC}, 20 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more	\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter, the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (solderless terminal with an insulation sleeve cannot be used.)	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)		$0.33 \mathrm{~A}(0.19 \mathrm{~A})^{*} 4$	0.28A	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.26 kg	0.22kg	-	

*1 The following tables list temperature sensors usable for the A1S64TCTRT.

Thermocouple type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
R	0 to 1700	1	0 to 3000	1
K	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1300 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 2400 \end{aligned}$	1
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \end{aligned}$	0.1	0.0 to 1000.0	0.1
J	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1200 \end{aligned}$	1	0 to 1000 0 to 1600 0 to 2100	1
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \end{aligned}$	0.1	0.0 to 1000.0	0.1
T	$\begin{aligned} & -200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1	0.0 to 700.0	0.1
S	0 to 1700	1	0 to 3000	1
B	400 to 1800	1	800 to 3000	1
E	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 1000 \end{aligned}$	1	0 to 1800	1
	0.0 to 700.0	0.1	-	-
N	0 to 1300	1	0 to 2300	1
U	$\begin{aligned} & 0 \text { to } 400 \\ & -200 \text { to } 200 \end{aligned}$	1	$\begin{array}{\|l\|} \hline 0 \text { to } 700 \\ -300 \text { to } 400 \end{array}$	1
	0.0 to 600.0	0.1	-	-
L	0 to 400 0 to 900	1	$\begin{aligned} & 0 \text { to } 800 \\ & 0 \text { to } 1600 \end{aligned}$	1
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 900.0 \end{aligned}$	0.1	-	-
PLII	0 to 1200	1	0 to 2300	1
W5Re/W26Re	0 to 2300	1	0 to 3000	1
Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
Pt100	$\begin{aligned} & -200.0 \text { to } 600.0 \\ & -200.0 \text { to } 200.0 \end{aligned}$	0.1	-300 to 1100	1
			-300.0 to 300.0	0.1
JPt100	$\begin{aligned} & -200.0 \text { to } 500.0 \\ & -200.0 \text { to } 200.0 \end{aligned}$	0.1	-300 to 900	1
			-300.0 to 300.0	0.1

*2 The following table lists temperature sensors usable for the R60TCTRT2TT2.

*4 Current value when the temperature conversion function is not used in an unused channel under heating-cooling control.

A1S64TCTRT (when platinum resistance thermometer is used) and R60TCRT4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S64TCTRT	R60TCRT4		
Control output		Transistor output		\bigcirc	
Number of temperature input points		Standard control: 4 channels/module Heating-cooling control: 2 channels/module	4 channels/module	\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Full scale $\times(\pm 0.3 \%)$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%)$ (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	\bigcirc	
	Cold junction temperature compensation accuracy (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Temperature process value $-100^{\circ} \mathrm{C}$ or higher: Within $\pm 1.0^{\circ} \mathrm{C}$ Temperature process value $-150^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$: Within $\pm 2.0^{\circ} \mathrm{C}$ Temperature process value $-200^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$: Within $\pm 3.0^{\circ} \mathrm{C}$	-	-	
Sampling cycle		500 ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCTRT4.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		Standard control: PID ON/OFF pulse or two-position control Heating-cooling control: PID ON/OFF pulse	PID ON/OFF pulse or two-position control	\bigcirc	
PID constants range	PID constants setting	Standard control: Setting can be made by auto-tuning or self-tuning. Heating-cooling control: Setting can be made by auto tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	Standard control: 0.0 to 1000.0\% Heating-cooling control: 0.1 to 1000.0\%	$\begin{aligned} & 0.0 \text { to } 1000.0 \% \text { (} 0: 2 \text {-position } \\ & \text { control) } \end{aligned}$	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	

Item		Specifications		Compatibility	Precautions
		A1S64TCTRT	R60TCRT4		
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	$0.4 \mathrm{~A}, 10 \mathrm{~ms}$		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to $\mathrm{E}^{2} \mathrm{PROM}$		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	
Withstand voltage		Between input terminal and programmable controller power supply: 500VAC for 1 minute Between input channels: 500VAC for 1 minute		\bigcirc	
Insulation resistance		Between input terminal and programmable controller power supply: 500VDC 10M Ω or more Between input channels: 500VDC 10M Ω or more	Between input terminal and programmable controller power supply: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more	\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter, the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)		$0.33 \mathrm{~A}(0.19 \mathrm{~A})^{*} 4$	0.28A	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.26 kg	0.22 kg	-	

*1 The following tables list temperature sensors usable for the A1S64TCTRT.

Thermocouple type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
R	0 to 1700	1	0 to 3000	1
K	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1300 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 2400 \end{aligned}$	1
	$\begin{array}{\|l\|} \hline-200.0 \text { to } 400.0 \\ 0.0 \text { to } 400.0 \\ 0.0 \text { to } 500.0 \\ 0.0 \text { to } 800.0 \end{array}$	0.1	0.0 to 1000.0	0.1
J	0 to 500 0 to 800 0 to 1200	1	0 to 1000 0 to 1600 0 to 2100	1
	$\begin{array}{\|l\|} \hline 0.0 \text { to } 400.0 \\ 0.0 \text { to } 500.0 \\ 0.0 \text { to } 800.0 \\ \hline \end{array}$	0.1	0.0 to 1000.0	0.1
T	$\begin{aligned} & -200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	$\begin{aligned} & \hline-200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1	0.0 to 700.0	0.1
S	0 to 1700	1	0 to 3000	1
B	400 to 1800	1	800 to 3000	1
E	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 1000 \end{aligned}$	1	0 to 1800	1
	0.0 to 700.0	0.1	-	-
N	0 to 1300	1	0 to 2300	1
U	$\begin{array}{\|l\|} \hline 0 \text { to } 400 \\ -200 \text { to } 200 \end{array}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	0.0 to 600.0	0.1	-	-
L	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 900 \end{aligned}$	1	0 to 8000 to 1600	1
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 900.0 \end{aligned}$	0.1	-	-
PLII	0 to 1200	1	0 to 2300	1
W5Re/W26Re	0 to 2300	1	0 to 3000	1
Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
Pt100	$\begin{aligned} & -200.0 \text { to } 600.0 \\ & -200.0 \text { to } 200.0 \end{aligned}$	0.1	-300 to 1100	1
			-300.0 to 300.0	0.1
JPt100	$\begin{aligned} & -200.0 \text { to } 500.0 \\ & -200.0 \text { to } 200.0 \end{aligned}$	0.1	-300 to 900	1
			-300.0 to 300.0	0.1

*2 The following table lists temperature sensors usable for the R60TCRT4.

Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
	Temperature measuring range	Resolution	Temperature measuring range	Resolution
Pt100	-200.0 to 600.0	0.1	-300 to 1100	1
	-200.0 to 200.0	-300.0 to 300.0	0.1	
JPt100	-200.0 to 850.0	0.1	-300 to 900	1
	-200.0 to 500.0			
-200.0 to 200.0	-200.0 to 640.0		-300.0 to 300.0	0.1

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative. The following table lists the applicable upgrade tools.

Item	Platinum resistance thermometer
Standard control	ERNT-2AR64TR
Heating-cooling control	ERNT-2AR62TR

*4 Current value when the temperature conversion function is not used in an unused channel under heating-cooling control.

A1S64TCTRTBW (when thermocouple is used) and R60TCTRT2TT2BW

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S64TCTRTBW	R60TCTRT2TT2BW		
Control output		Transistor output		\bigcirc	
Number of temperature input points		Standard control: 4 channels/module Heating-cooling control: 2 channels/module	4 channels/module	\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Full scale $\times(\pm 0.3 \%)$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%)$ (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	\bigcirc	
	Cold junction temperature compensation accuracy (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Temperature process value $-100^{\circ} \mathrm{C}$ or higher: Within $\pm 1.0^{\circ} \mathrm{C}$ Temperature process value $-150^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$: Within $\pm 2.0^{\circ} \mathrm{C}$ Temperature process value $-200^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$: Within $\pm 3.0^{\circ} \mathrm{C}$		\bigcirc	
Sampling cycle		500ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCTRT2TT2BW.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		Standard control: PID ON/OFF pulse or two-position control Heating-cooling control: PID ON/OFF pulse	PID ON/OFF pulse or two-position control	\bigcirc	
PID constants range	PID constants setting	Standard control: Setting can be made by auto-tuning or self-tuning. Heating-cooling control: Setting can be made by auto tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	Standard control: 0.0 to 1000.0\% Heating-cooling control: 0.1 to 1000.0\%	0.0 to 1000.0\% (0: 2-position control)	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	

Item		Specifications		Compatibility	Precautions
		A1S64TCTRTBW	R60TCTRT2TT2BW		
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	$0.4 \mathrm{~A}, 10 \mathrm{~ms}$		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to $\mathrm{E}^{2} \mathrm{PROM}$		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	
Withstand voltage		Between input terminal and programmable controller power supply: 500VAC for 1 minute Between input channels: 500VAC for 1 minute		\bigcirc	
Insulation resistance		Between input terminal and programmable controller power supply: 500VDC $10 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 10 \mathrm{M} \Omega$ or more	Between input terminal and programmable controller power supply: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more	\bigcirc	
Heater disconnection detection specifications	Current sensor	*3		\bigcirc	
	Input accuracy	Full scale $\times(\pm 1.0 \%)$		\bigcirc	
	Number of alert delay	3 to 255		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws) $\times 2$	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter, the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*} 4$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	32 points, 2 slots (I/O assignment: empty 16 points + intelligent 16 points)	\triangle	The number of occupied I/ O points is changed after replacement.
Internal current consumption(5VDC)		0.39A (0.25A) ${ }^{*}$	0.31A	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 56$ (W) $\times 110$ (D) mm	-	
Weight		0.28 kg	0.34 kg	-	

*1 The following tables list temperature sensors usable for the A1S64TCTRTBW.

Thermocouple type	${ }^{\circ} \mathrm{C}$			
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
R	0 to 1700	1	0 to 3000	1
K	0 to 500 0 to 800 0 to 1300	1	0 to 1000 0 to 2400	1
	-200.0 to 400.0 0.0 to 400.0 0.0 to 500.0 0.0 to 800.0	0.1	0.0 to 1000.0	0.1

Thermocouple type	${ }^{\circ} \mathrm{C}$			${ }^{\circ} \mathrm{F}$		
	Temperature measuring range	Resolution	Effect from wiring resistance of $1 \Omega\left({ }^{\circ} \mathrm{C} /\right.$ Ω)	Temperature measuring range	Resolution	Effect from wiring resistance of 1Ω (${ }^{\circ} \mathrm{F} /$ Ω)
T	$\begin{aligned} & -200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	0.004	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1	0.008
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1		0.0 to 700.0	0.1	
S	0 to 1700	1	0.030	0 to 3000	1	0.054
B	0 to 1800	1	0.038	0 to 3000	1	0.068
E	$\begin{array}{\|l\|} \hline 0 \text { to } 400 \\ 0 \text { to } 1000 \end{array}$	1	0.003	0 to 1800	1	0.005
	$\begin{aligned} & 0.0 \text { to } 700.0 \\ & -200.0 \text { to } 1000.0 \end{aligned}$	0.1		-	-	-
N	0 to 1300	1	0.006	0 to 2300	1	0.011
	0.0 to 1000.0	0.1		-	-	-
U	$\begin{aligned} & \hline 0 \text { to } 400 \\ & -200 \text { to } 200 \end{aligned}$	1	0.004	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1	0.009
	0.0 to 600.0	0.1		-	-	-
L	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 900 \end{aligned}$	1	0.003	$\begin{aligned} & 0 \text { to } 800 \\ & 0 \text { to } 1600 \end{aligned}$	1	0.006
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 900.0 \end{aligned}$	0.1		-	-	-
PLII	0 to 1200	1	0.005	0 to 2300	1	0.010
W5Re/W26Re	0 to 2300	1	0.017	0 to 3000	1	0.021

*3 The following lists selectable current sensors.

A1S64TCTRTBW

- CTL-12-S36-8 (0.0 to 100.0A)
- CTL-6-P-H (0.0~20.00A) (The conventional CTL-6-P is also available.)

R60TCTRT2TT2BW

Model	Contact
CTL-12-S36-10 (0.0 to 100.0 A$)$	U.R.D. Co., LTD.
CTL-12-S56-10 $(0.0$ to 100.0 A$)$	
CTL-6-P-H $(0.00$ to 20.00 A$)$	
CTL-6-S-H $(0.00$ to 20.00 A$)$	
CTL-12L-8 $(0.0$ to 100.0 A$)$	

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative. The following table lists the applicable upgrade tools.

Item	Thermocouple
Standard control	ERNT-2AR64TT1BW
Heating-cooling control	ERNT-2AR62TT1BW

*5 Current value when the temperature conversion function is not used in an unused channel under heating-cooling control.

A1S64TCTRTBW (when platinum resistance thermometer is used) and R60TCRT4BW

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S64TCTRTBW	R60TCRT4BW		
Control output		Transistor output		\bigcirc	
Number of temperature input points		Standard control: 4 channels/module Heating-cooling control: 2 channels/module	4 channels/module	\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Full scale $\times(\pm 0.3 \%)$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%)$ (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	\bigcirc	
	Cold junction temperature compensation accuracy (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Temperature process value $-100^{\circ} \mathrm{C}$ or higher: Within $\pm 1.0^{\circ} \mathrm{C}$ Temperature process value $-150^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$: Within $\pm 2.0^{\circ} \mathrm{C}$ Temperature process value $-200^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$: Within $\pm 3.0^{\circ} \mathrm{C}$	-	-	
Sampling cycle		500 ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCRT4BW.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		Standard control: PID ON/OFF pulse or two-position control Heating-cooling control: PID ON/OFF pulse	PID ON/OFF pulse or two-position control	\bigcirc	
PID constants range	PID constants setting	Standard control: Setting can be made by auto-tuning or self-tuning. Heating-cooling control: Setting can be made by auto tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	Standard control: 0.0 to 1000.0% Heating-cooling control: 0.1 to 1000.0\%	0.0 to 1000.0\% (0: 2-position control)	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	

Item		Specifications		Compatibility	Precautions
		A1S64TCTRTBW	R60TCRT4BW		
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	0.1A/point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	$0.4 \mathrm{~A}, 10 \mathrm{~ms}$		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to $\mathrm{E}^{2} \mathrm{PROM}$		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	
Withstand voltage		Between input terminal and programmable controller power supply: 500VAC for 1 minute Between input channels: 500VAC for 1 minute		\bigcirc	
Insulation resistance		Between input terminal and programmable controller power supply: 500VDC 10M Ω or more Between input channels: $500 \mathrm{VDC} 10 \mathrm{M} \Omega$ or more	Between input terminal and programmable controller power supply: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more	\bigcirc	
Heater disconnection detection specifications	Current sensor	*3		\bigcirc	
	Input accuracy	Full scale $\times(\pm 1.0 \%)$		\bigcirc	
	Number of alert delay	3 to 255		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws) $\times 2$	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter, the existing external wiring and terminal blocks in the existing system can be used. ${ }^{4}{ }^{4}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	32 points, 2 slots (l/O assignment: empty 16 points + intelligent 16 points)	\triangle	The number of occupied I/ O points is changed after replacement.
Internal current consumption (5VDC)		$0.39 \mathrm{~A}(0.25 \mathrm{~A})^{*}$	0.31 A	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 56$ (W) $\times 110$ (D) mm	-	
Weight		0.28 kg	0.34 kg	-	

*1 The following tables list temperature sensors usable for the A1S64TCTRTBW.

Thermocouple type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
R	0 to 1700	1	0 to 3000	1
K	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1300 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 2400 \end{aligned}$	1
	$\begin{array}{\|l\|} \hline-200.0 \text { to } 400.0 \\ 0.0 \text { to } 400.0 \\ 0.0 \text { to } 500.0 \\ 0.0 \text { to } 800.0 \end{array}$	0.1	0.0 to 1000.0	0.1
J	0 to 500 0 to 800 0 to 1200	1	0 to 1000 0 to 1600 0 to 2100	1
	0.0 to 400.0 0.0 to 500.0 0.0 to 800.0	0.1	0.0 to 1000.0	0.1
T	$\begin{aligned} & -200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	$\begin{aligned} & \hline-200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1	0.0 to 700.0	0.1
S	0 to 1700	1	0 to 3000	1
B	400 to 1800	1	800 to 3000	1
E	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 1000 \end{aligned}$	1	0 to 1800	1
	0.0 to 700.0	0.1	-	-
N	0 to 1300	1	0 to 2300	1
U	$\begin{array}{\|l\|} \hline 0 \text { to } 400 \\ -200 \text { to } 200 \end{array}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	0.0 to 600.0	0.1	-	-
L	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 900 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 800 \\ & 0 \text { to } 1600 \end{aligned}$	1
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 900.0 \end{aligned}$	0.1	-	-
PLII	0 to 1200	1	0 to 2300	1
W5Re/W26Re	0 to 2300	1	0 to 3000	1
Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
Pt100	$\begin{aligned} & -200.0 \text { to } 600.0 \\ & -200.0 \text { to } 200.0 \end{aligned}$	0.1	-300 to 1100	1
			-300.0 to 300.0	0.1
JPt100	$\begin{aligned} & -200.0 \text { to } 500.0 \\ & -200.0 \text { to } 200.0 \end{aligned}$	0.1	-300 to 900	1
			-300.0 to 300.0	0.1

*2 The following table lists temperature sensors usable for the R60TCRT4BW.

Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
	Temperature measuring range	Resolution	Temperature measuring range	Resolution
Pt100	-200.0 to 600.0	0.1	-300 to 1100	1
	-200.0 to 200.0			
-200.0 to 850.0	-300.0 to 300.0	0.1		
JPt100	-200.0 to 500.0	-200.0 to 200.0	0.1	-300 to 900
	-200.0 to 640.0	-300.0 to 300.0	1	

*3 The following lists selectable current sensors.
A1S64TCTRTBW

- CTL-12-S36-8 (0.0 to 100.0A)
- CTL-6-P-H (0.0~20.00A) (The conventional CTL-6-P is also available.)

R60TCRT4BW

Model		Contact
CTL-12-S36-10 (0.0 to 100.0A)		U.R.D. Co., LTD. www.u-rd.com/english
CTL-12-S56-10 (0.0 to 100.0A)		
CTL-6-P-H (0.00 to 20.00A)		
CTL-6-S-H (0.00 to 20.00A)		
CTL-12L-8 (0.0 to 100.0A)		
*4 For an upgrade tool, please consult your local Mitsubishi Electric representative. The following table lists the applicable upgrade tools.		
Item	Platinum resistance thermometer	
Standard control	ERNT-2AR64TR1BW	
Heating-cooling control	ERNT-2AR62TR1BW	

*5 Current value when the temperature conversion function is not used in an unused channel under heating-cooling control.

A1S64TCTT-S1 and R60TCTRT2TT2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S64TCTT-S1	R60TCTRT2TT2		
Control output		Transistor output		\bigcirc	
Number of temperature input points		4 channels/module		\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Full scale $\times(\pm 0.3 \%)$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%)$ (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	\bigcirc	
	Cold junction temperature compensation accuracy (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Temperature process value $-100^{\circ} \mathrm{C}$ or higher: Within $\pm 1.0^{\circ} \mathrm{C}$ Temperature process value $-150^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$: Within $\pm 2.0^{\circ} \mathrm{C}$ Temperature process value $-200^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$: Within $\pm 3.0^{\circ} \mathrm{C}$		\bigcirc	
Sampling cycle		500 ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCTRT2TT2.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		PID ON/OFF pulse or two-position control		\bigcirc	
PID constants range	PID constants setting	Setting can be made by auto-tuning or self-tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	0.0 to 1000.0\%	$\begin{aligned} & 0.0 \text { to } 1000.0 \% \text { (} 0: \text { 2-position } \\ & \text { control) } \end{aligned}$	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	0.4A, 10 ms		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1A at 1.0VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to $\mathrm{E}^{2} \mathrm{PR}$ OM		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	

Item	Specifications		Compatibility	Precautions
	A1S64TCTT-S1	R60TCTRT2TT2		

*1 The following table lists temperature sensors usable for the A1S64TCTT-S1.

Thermocouple type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
R	0 to 1700	1	0 to 3000	1
K	0 to 500 0 to 800 0 to 1300	1	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 2400 \end{aligned}$	1
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \end{aligned}$	0.1	0.0 to 1000.0	0.1
J	0 to 500 0 to 800 0 to 1200	1	0 to 1000 0 to 1600 0 to 2100	1
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \end{aligned}$	0.1	0.0 to 1000.0	0.1
T	$\begin{aligned} & \hline-200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1	0.0 to 700.0	0.1
S	0 to 1700	1	0 to 3000	1
B	400 to 1800	1	800 to 3000	1
E	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 1000 \end{aligned}$	1	0 to 1800	1
	0.0 to 700.0	0.1	-	-
N	0 to 1300	1	0 to 2300	1
U	$\begin{aligned} & 0 \text { to } 400 \\ & -200 \text { to } 200 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	0.0 to 600.0	0.1	-	-
L	0 to 400 0 to 900	1	$\begin{aligned} & 0 \text { to } 800 \\ & 0 \text { to } 1600 \end{aligned}$	1
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 900.0 \end{aligned}$	0.1	-	-
PLII	0 to 1200	1	0 to 2300	1
W5Re/W26Re	0 to 2300	1	0 to 3000	1

*2 The following table lists temperature sensors usable for the R60TCTRT2TT2.

Thermocouple type	${ }^{\circ} \mathrm{C}$			${ }^{\circ} \mathrm{F}$		
	Temperature measuring range	Resolution	Effect from wiring resistance of $1 \Omega\left({ }^{\circ} \mathrm{C} /\right.$ Ω)	Temperature measuring range	Resolution	Effect from wiring resistance of $1 \Omega\left({ }^{\circ} \mathrm{F} /\right.$ Ω)
R	0 to 1700	1	0.030	0 to 3000	1	0.054
K	0 to 500 0 to 800 0 to 1300	1	0.005	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 2400 \end{aligned}$	1	0.008
	-200.0 to 400.0 0.0 to 400.0 0.0 to 500.0 0.0 to 800.0 -200.0 to 1300.0	0.1		0.0 to 1000.0	0.1	
J	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1200 \end{aligned}$	1	0.003	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 1600 \\ & 0 \text { to } 2100 \end{aligned}$	1	0.006
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \\ & -200.0 \text { to } 1000.0 \end{aligned}$	0.1		0.0 to 1000.0	0.1	
T	$\begin{aligned} & -200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	0.004	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1	0.008
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1		0.0 to 700.0	0.1	
S	0 to 1700	1	0.030	0 to 3000	1	0.054
B	0 to 1800	1	0.038	0 to 3000	1	0.068
E	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 1000 \end{aligned}$	1	0.003	0 to 1800	1	0.005
	$\begin{aligned} & 0.0 \text { to } 700.0 \\ & -200.0 \text { to } 1000.0 \end{aligned}$	0.1		-	-	-
N	0 to 1300	1	0.006	0 to 2300	1	0.011
	0.0 to 1000.0	0.1		-	-	-
U	$\begin{aligned} & 0 \text { to } 400 \\ & -200 \text { to } 200 \end{aligned}$	1	0.004	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1	0.009
	0.0 to 600.0	0.1		-	-	-
L	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 900 \end{aligned}$	1	0.003	$\begin{aligned} & 0 \text { to } 800 \\ & 0 \text { to } 1600 \end{aligned}$	1	0.006
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 900.0 \end{aligned}$	0.1		-	-	-
PLII	0 to 1200	1	0.005	0 to 2300	1	0.010
W5Re/W26Re	0 to 2300	1	0.017	0 to 3000	1	0.021

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S64TCTTBW-S1 and R60TCTRT2TT2BW

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S64TCTTBW-S1	R60TCTRT2TT2BW		
Control output		Transistor output		\bigcirc	
Number of temperature input points		4 channels/module		\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Full scale $\times(\pm 0.3 \%)$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%)$ (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	\bigcirc	
	Cold junction temperature compensation accuracy (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Temperature process value $-100^{\circ} \mathrm{C}$ or higher: Within $\pm 1.0^{\circ} \mathrm{C}$ Temperature process value $-150^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$: Within $\pm 2.0^{\circ} \mathrm{C}$ Temperature process value $-200^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$: Within $\pm 3.0^{\circ} \mathrm{C}$		\bigcirc	
Sampling cycle		500ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCTRT2TT2BW.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		PID ON/OFF pulse or two-position control		\bigcirc	
PID constants range	PID constants setting	Setting can be made by auto-tuning or self-tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	0.0 to 1000.0\%	0.0 to 1000.0\% (0: 2-position control)	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	$0.4 \mathrm{~A}, 10 \mathrm{~ms}$		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to $\mathrm{E}^{2} \mathrm{PROM}$		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	
Withstand voltage		Between input terminal and programmable controller power supply: 500VAC for 1 minute Between input channels: 500VAC for 1 minute		\bigcirc	

Item		Specifications		Compatibility	Precautions
		A1S64TCTTBW-S1	R60TCTRT2TT2BW		
Insulation resistance		Between input terminal and programmable controller power supply: 500VDC 10M or more Between input channels: 500VDC 10M Ω or more	Between input terminal and programmable controller power supply: 500VDC 20M 2 or more Between input channels: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more	\bigcirc	
Heater disconnection detection specifications	Current sensor	*3		\bigcirc	
	Input accuracy	Full scale $\times(\pm 1.0 \%$)		\bigcirc	
	Number of alert delay	3 to 255		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws) $\times 2$	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR64TT1BW), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{4}{ }^{4}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	32 points, 2 slots (I/O assignment: empty 16 points + intelligent 16 points)	\triangle	The number of occupied I/ O points is changed after replacement.
Internal current consumption (5VDC)		0.33A	0.31 A	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 56$ (W) $\times 110$ (D) mm	-	
Weight		0.30 kg	0.34 kg	-	

*1 The following table lists temperature sensors usable for the A1S64TCTTBW-S1.

Thermocouple type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
R	0 to 1700	1	0 to 3000	1
K	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1300 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 2400 \end{aligned}$	1
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \end{aligned}$	0.1	0.0 to 1000.0	0.1
J	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1200 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 1600 \\ & 0 \text { to } 2100 \end{aligned}$	1
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \end{aligned}$	0.1	0.0 to 1000.0	0.1
T	$\begin{aligned} & -200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1	0.0 to 700.0	0.1
S	0 to 1700	1	0 to 3000	1
B	400 to 1800	1	800 to 3000	1
E	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 1000 \end{aligned}$	1	0 to 1800	1
	0.0 to 700.0	0.1	-	-
N	0 to 1300	1	0 to 2300	1
U	$\begin{aligned} & 0 \text { to } 400 \\ & -200 \text { to } 200 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	0.0 to 600.0	0.1	-	-

Thermocouple type	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
L	0 to 400 0 to 900	1	0 to 8000 to 1600	1
	0.0 to 400.0 0.0 to 900.0	0.1	-	-
PLII	0 to 1200	1	0 to 2300	1
W5Re/W26Re	0 to 2300	1	0 to 3000	1

*2 The following table lists temperature sensors usable for the R60TCTRT2TT2BW.

Thermocouple type	${ }^{\circ} \mathrm{C}$			${ }^{\circ} \mathrm{F}$		
	Temperature measuring range	Resolution	Effect from wiring resistance of $1 \Omega\left({ }^{\circ} \mathrm{C} /\right.$ Ω)	Temperature measuring range	Resolution	Effect from wiring resistance of $1 \Omega\left({ }^{\circ} \mathrm{F} /\right.$ Ω)
R	0 to 1700	1	0.030	0 to 3000	1	0.054
K	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1300 \end{aligned}$	1	0.005	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 2400 \end{aligned}$	1	0.008
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \\ & -200.0 \text { to } 1300.0 \end{aligned}$	0.1		0.0 to 1000.0	0.1	
J	0 to 500 0 to 800 0 to 1200	1	0.003	0 to 1000 0 to 1600 0 to 2100	1	0.006
	0.0 to 400.0 0.0 to 500.0 0.0 to 800.0 -200.0 to 1000.0	0.1		0.0 to 1000.0	0.1	
T	$\begin{aligned} & -200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	0.004	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1	0.008
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1		0.0 to 700.0	0.1	
S	0 to 1700	1	0.030	0 to 3000	1	0.054
B	0 to 1800	1	0.038	0 to 3000	1	0.068
E	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 1000 \end{aligned}$	1	0.003	0 to 1800	1	0.005
	$\begin{aligned} & 0.0 \text { to } 700.0 \\ & -200.0 \text { to } 1000.0 \end{aligned}$	0.1		-	-	-
N	0 to 1300	1	0.006	0 to 2300	1	0.011
	0.0 to 1000.0	0.1		-	-	-
U	$\begin{aligned} & 0 \text { to } 400 \\ & -200 \text { to } 200 \end{aligned}$	1	0.004	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1	0.009
	0.0 to 600.0	0.1		-	-	-
L	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 900 \end{aligned}$	1	0.003	$\begin{aligned} & 0 \text { to } 800 \\ & 0 \text { to } 1600 \end{aligned}$	1	0.006
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 900.0 \end{aligned}$	0.1		-	-	-
PLII	0 to 1200	1	0.005	0 to 2300	1	0.010
W5Re/W26Re	0 to 2300	1	0.017	0 to 3000	1	0.021

*3 The following lists selectable current sensors.
A1S64TCTTBW-S1

- CTL-12-S36-8 (0.0 to 100.0A)
- CTL-6-P-H (0.0~20.00A) (The conventional CTL-6-P is also available.)

R60TCTRT2TT2BW

Model	Contact
CTL-12-S36-10 (0.0 to 100.0A)	U.R.D. Co., LTD. www.u-rd.com/english
CTL-12-S56-10 (0.0 to 100.0A)	
CTL-6-P-H (0.00 to 20.00A)	
CTL-6-S-H (0.00 to 20.00A)	
CTL-12L-8 (0.0 to 100.0A)	

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S64TCRT-S1 and R60TCRT4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S64TCRT-S1	R60TCRT4		
Control output		Transistor output		\bigcirc	
Number of temperature input points		4 channels/module		\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Full scale $\times(\pm 0.3 \%)$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%)$ (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	\bigcirc	
Sampling cycle		500 ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCRT4.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		PID ON/OFF pulse or two-position control		\bigcirc	
PID constants range	PID constants setting	Setting can be made by auto-tuning or self-tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	0.0 to 1000.0\%	0.0 to 1000.0\% (0: 2-position control)	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	$0.4 \mathrm{~A}, 10 \mathrm{~ms}$		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to E^{2} PROM		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	O	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	
Withstand voltage		Between input terminal and programmable controller power supply: 500VAC for 1 minute Between input channels: 500VAC for 1 minute		\bigcirc	

Item	Specifications		Compatibility	Precautions
	A1S64TCRT-S1	R60TCRT4		
Insulation resistance	Between input terminal and programmable controller power supply: 500VDC $10 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 10 \mathrm{M} \Omega$ or more	Between input terminal and programmable controller power supply: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more	\bigcirc	
External interface	20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR64TR), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size	0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal	$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	-	
Number of occupied I/O points	32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)	0.33A	0.28A	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight	0.27 kg	0.22 kg	-	

*1 The following table lists temperature sensors usable for the A1S64TCRT-S1.

Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
Pt100	-200.0 to 600.0	0.1	-300 to 1100	1
JPt100	-200.0 to 200.0	-300.0 to 300.0	0.1	
	-200.0 to 500.0	0.1	-300 to 900	1

*2 The following table lists temperature sensors usable for the R60TCRT4.

Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$		F	
	Temperature measuring range	Resolution	Temperature measuring range	Resolution
Pt100	-200.0 to 600.0	0.1	-300 to 1100	1
JPt100	-200.0 to 200.0			
-200.0 to 850.0	-300.0 to 300.0	0.1		
	-200.0 to 500.0	-200.0 to 200.0		
-200.0 to 640.0	0.1	-300 to 900	1	

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S64TCRTBW-S1 and R60TCRT4BW

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S64TCRTBW-S1	R60TCRT4BW		
Control output		Transistor output		\bigcirc	
Number of temperature input points		4 channels/module		\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Full scale $\times(\pm 0.3 \%)$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%)$ (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	\bigcirc	
Sampling cycle		500ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCRT4BW.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		PID ON/OFF pulse or two-position control		\bigcirc	
PID constants range	PID constants setting	Setting can be made by auto-tuning or self-tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	0.0 to 1000.0\%	0.0 to 1000.0\% (0: 2-position control)	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	$0.4 \mathrm{~A}, 10 \mathrm{~ms}$		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to $\mathrm{E}^{2} \mathrm{PROM}$		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	
Withstand voltage		Between input terminal and programmable controller power supply: 500VAC for 1 minute Between input channels: 500VAC for 1 minute		\bigcirc	

Item		Specifications		Compatibility	Precautions
		A1S64TCRTBW-S1	R60TCRT4BW		
Insulation resistance		Between input terminal and programmable controller power supply: 500VDC 10M Ω or more Between input channels: 500VDC 10M Ω or more	Between input terminal and programmable controller power supply: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more	\bigcirc	
Heater disconnection detection specifications	Current sensor	*3		\bigcirc	
	Input accuracy	Full scale $\times(\pm 1.0 \%)$		\bigcirc	
	Number of alert delay	3 to 255		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws) $\times 2$	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR64TR1BW), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*} 4$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal		R1.25-3, 1.25-YS3, RAV1.25-3, V1.25-YS3A	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	32 points, 2 slots (I/O assignment: empty 16 points + intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption(5VDC)		0.33A	0.31 A	-	
External dimensions		$130(\mathrm{H}) \times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	106(H) $\times 56(\mathrm{~W}) \times 110(\mathrm{D}) \mathrm{mm}$	-	
Weight		0.30 kg	0.34 kg	-	

*1 The following table lists temperature sensors usable for the A1S64TCRTBW-S1.

Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
Pt100	-200.0 to 600.0			
-200.0 to 200.0	0.1	-300 to 1100	1	
JPt100	-200.0 to 500.0		-300.0 to 300.0	0.1

*2 The following table lists temperature sensors usable for the R60TCRT4BW.

Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measuring range	Resolution	Temperature measuring range	Resolution
Pt100	$\begin{aligned} & -200.0 \text { to } 600.0 \\ & -200.0 \text { to } 200.0 \\ & -200.0 \text { to } 850.0 \end{aligned}$	0.1	-300 to 1100	1
			-300.0 to 300.0	0.1
JPt100	$\begin{aligned} & -200.0 \text { to } 500.0 \\ & -200.0 \text { to } 200.0 \\ & -200.0 \text { to } 640.0 \end{aligned}$	0.1	-300 to 900	1
			-300.0 to 300.0	0.1

*3 The following lists selectable current sensors.
A1S64TCRTBW-S1

- CTL-12-S36-8 (0.0 to 100.0A)
- CTL-6-P-H (0.0~20.00A) (The conventional CTL-6-P is also available.)

R60TCRT4BW

Model	Contact
CTL-12-S36-10 (0.0 to 100.0A)	U.R.D. Co., LTD. www.u-rd.com/english
CTL-12-S56-10 (0.0 to 100.0A)	
CTL-6-P-H (0.00 to 20.00A)	
CTL-6-S-H (0.00 to 20.00A)	
CTL-12L-8 (0.0 to 100.0A)	

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S62TCTT-S2 and R60TCTRT2TT2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S62TCTT-S2	R60TCTRT2TT2		
Control output		Transistor output		\bigcirc	
Number of temperature input points		2 channels/module	4 channels/module	\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Full scale $\times(\pm 0.3 \%)$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%)$ (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	\bigcirc	
	Cold junction temperature compensation accuracy (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Temperature process value $-100^{\circ} \mathrm{C}$ or higher: Within $\pm 1.0^{\circ} \mathrm{C}$ Temperature process value $-150^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$: Within $\pm 2.0^{\circ} \mathrm{C}$ Temperature process value $-200^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$: Within $\pm 3.0^{\circ} \mathrm{C}$		\bigcirc	
Sampling cycle		500 ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCTRT2TT2.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		PID ON/OFF pulse or two-position control		\bigcirc	
PID constants range	PID constants setting	Setting can be made by auto-tuning or self-tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	0.0 to 1000.0\%	$\begin{aligned} & 0.0 \text { to } 1000.0 \% \text { (} 0: \text { 2-position } \\ & \text { control) } \end{aligned}$	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	0.4A, 10 ms		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to $\mathrm{E}^{2} \mathrm{PROM}$		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	

Thermocouple type	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
L	0 to 400 0 to 900	1	0 to 800 0 to 1600	1
	0.0 to 400.0			
0.0 to 900.0	0.1	-	-	
PLII	0 to 1200	1	0 to 2300	1
W5Re/W26Re	0 to 2300	1	0 to 3000	1

*2 The following table lists temperature sensors usable for the R60TCTRT2TT2.

Thermocouple type	${ }^{\circ} \mathrm{C}$			${ }^{\circ} \mathrm{F}$		
	Temperature measuring range	Resolution	Effect from wiring resistance of $1 \Omega\left({ }^{\circ} \mathrm{C} /\right.$ Ω)	Temperature measuring range	Resolution	Effect from wiring resistance of $1 \Omega\left({ }^{\circ} \mathrm{F} /\right.$ Ω)
R	0 to 1700	1	0.030	0 to 3000	1	0.054
K	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1300 \end{aligned}$	1	0.005	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 2400 \end{aligned}$	1	0.008
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \\ & -200.0 \text { to } 1300.0 \end{aligned}$	0.1		0.0 to 1000.0	0.1	
J	0 to 500 0 to 800 0 to 1200	1	0.003	0 to 1000 0 to 1600 0 to 2100	1	0.006
	0.0 to 400.0 0.0 to 500.0 0.0 to 800.0 -200.0 to 1000.0	0.1		0.0 to 1000.0	0.1	
T	$\begin{aligned} & -200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	0.004	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1	0.008
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1		0.0 to 700.0	0.1	
S	0 to 1700	1	0.030	0 to 3000	1	0.054
B	0 to 1800	1	0.038	0 to 3000	1	0.068
E	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 1000 \end{aligned}$	1	0.003	0 to 1800	1	0.005
	$\begin{aligned} & 0.0 \text { to } 700.0 \\ & -200.0 \text { to } 1000.0 \end{aligned}$	0.1		-	-	-
N	0 to 1300	1	0.006	0 to 2300	1	0.011
	0.0 to 1000.0	0.1		-	-	-
U	$\begin{aligned} & 0 \text { to } 400 \\ & -200 \text { to } 200 \end{aligned}$	1	0.004	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1	0.009
	0.0 to 600.0	0.1		-	-	-
L	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 900 \end{aligned}$	1	0.003	$\begin{aligned} & 0 \text { to } 800 \\ & 0 \text { to } 1600 \end{aligned}$	1	0.006
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 900.0 \end{aligned}$	0.1		-	-	-
PLII	0 to 1200	1	0.005	0 to 2300	1	0.010
W5Re/W26Re	0 to 2300	1	0.017	0 to 3000	1	0.021

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S62TCTTBW-S2 and R60TCTRT2TT2BW

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S62TCTTBW-S2	R60TCTRT2TT2BW		
Control output		Transistor output		\bigcirc	
Number of temperature input points		2 channels/module	4 channels/module	\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Full scale $\times(\pm 0.3 \%)$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%)$ (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	\bigcirc	
	Cold junction temperature compensation accuracy (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Temperature process value $-100^{\circ} \mathrm{C}$ or higher: Within $\pm 1.0^{\circ} \mathrm{C}$ Temperature process value $-150^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$: Within $\pm 2.0^{\circ} \mathrm{C}$ Temperature process value $-200^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$: Within $\pm 3.0^{\circ} \mathrm{C}$		\bigcirc	
Sampling cycle		500 ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCTRT2TT2BW.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		PID ON/OFF pulse or two-position control		\bigcirc	
PID constants range	PID constants setting	Setting can be made by auto-tuning or self-tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	0.0 to 1000.0\%	0.0 to 1000.0\% (0: 2-position control)	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	$0.4 \mathrm{~A}, 10 \mathrm{~ms}$		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to $\mathrm{E}^{2} \mathrm{PROM}$		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	
Withstand voltage		Between input terminal and programmable controller power supply: 500VAC for 1 minute Between input channels: 500VAC for 1 minute		\bigcirc	

Item		Specifications		Compatibility	Precautions
		A1S62TCTTBW-S2	R60TCTRT2TT2BW		
Insulation resistance		Between input terminal and programmable controller power supply: 500VDC 10M Ω or more Between input channels: $500 \mathrm{VDC} 10 \mathrm{M} \Omega$ or more	Between input terminal and programmable controller power supply: 500VDC $20 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more	\bigcirc	
Heater disconnection detection specifications	Current sensor	*3		\bigcirc	
	Input accuracy	Full scale \times ($\pm 1.0 \%$)		\bigcirc	
	Number of alert delay	3 to 255		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws) $\times 2$	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR62TT1BW), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*} 4$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (solderless terminal with an insulation sleeve cannot be used.)	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	32 points, 2 slots (I/O assignment: empty 16 points + intelligent 16 points)	\triangle	The number of occupied I/ O points is changed after replacement.
Internal current consumption (5VDC)		0.28A	0.31A	-	
External dimensions		130(H) $\times 34.5$ (W) $\times 93.6$ (D) mm	106(H) $\times 56$ (W) $\times 110$ (D) mm	-	
Weight		0.28 kg	0.34 kg	-	

*1 The following table lists temperature sensors usable for the A1S62TCTTBW-S2.

Thermocouple type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
R	0 to 1700	1	0 to 3000	1
K	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1300 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 2400 \end{aligned}$	1
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \end{aligned}$	0.1	0.0 to 1000.0	0.1
J	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1200 \end{aligned}$	1	0 to 1000 0 to 1600 0 to 2100	1
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 500.0 \\ & 0.0 \text { to } 800.0 \end{aligned}$	0.1	0.0 to 1000.0	0.1
T	$\begin{aligned} & -200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1	0.0 to 700.0	0.1
S	0 to 1700	1	0 to 3000	1
B	400 to 1800	1	800 to 3000	1
E	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 1000 \end{aligned}$	1	0 to 1800	1
	0.0 to 700.0	0.1	-	-
N	0 to 1300	1	0 to 2300	1
U	$\begin{aligned} & 0 \text { to } 400 \\ & -200 \text { to } 200 \end{aligned}$	1	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1
	0.0 to 600.0	0.1	-	-
L	0 to 400 0 to 900	1	$\begin{aligned} & 0 \text { to } 800 \\ & 0 \text { to } 1600 \end{aligned}$	1
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 900.0 \end{aligned}$	0.1	-	-
PLII	0 to 1200	1	0 to 2300	1
W5Re/W26Re	0 to 2300	1	0 to 3000	1

*2 The following table lists temperature sensors usable for the R60TCTRT2TT2BW.

Thermocouple type	${ }^{\circ} \mathrm{C}$			${ }^{\circ} \mathrm{F}$		
	Temperature measuring range	Resolution	Effect from wiring resistance of $1 \Omega\left({ }^{\circ} \mathrm{C} /\right.$ Ω)	Temperature measuring range	Resolution	Effect from wiring resistance of $1 \Omega\left({ }^{\circ} \mathrm{F} /\right.$ Ω)
R	0 to 1700	1	0.030	0 to 3000	1	0.054
K	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1300 \end{aligned}$	1	0.005	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 2400 \end{aligned}$	1	0.008
	-200.0 to 400.0 0.0 to 400.0 0.0 to 500.0 0.0 to 800.0 -200.0 to 1300.0	0.1		0.0 to 1000.0	0.1	
J	$\begin{aligned} & 0 \text { to } 500 \\ & 0 \text { to } 800 \\ & 0 \text { to } 1200 \end{aligned}$	1	0.003	$\begin{aligned} & 0 \text { to } 1000 \\ & 0 \text { to } 1600 \\ & 0 \text { to } 2100 \end{aligned}$	1	0.006
	0.0 to 400.0 0.0 to 500.0 0.0 to 800.0 -200.0 to 1000.0	0.1		0.0 to 1000.0	0.1	

Thermocouple type	${ }^{\circ} \mathrm{C}$			${ }^{\circ} \mathrm{F}$		
	Temperature measuring range	Resolution	Effect from wiring resistance of $1 \Omega\left({ }^{\circ} \mathrm{C} /\right.$ Ω)	Temperature measuring range	Resolution	Effect from wiring resistance of 1Ω (${ }^{\circ} \mathrm{F} /$ Ω)
T	$\begin{aligned} & -200 \text { to } 400 \\ & -200 \text { to } 200 \\ & 0 \text { to } 200 \\ & 0 \text { to } 400 \end{aligned}$	1	0.004	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1	0.008
	$\begin{aligned} & -200.0 \text { to } 400.0 \\ & 0.0 \text { to } 400.0 \end{aligned}$	0.1		0.0 to 700.0	0.1	
S	0 to 1700	1	0.030	0 to 3000	1	0.054
B	0 to 1800	1	0.038	0 to 3000	1	0.068
E	$\begin{array}{\|l\|} \hline 0 \text { to } 400 \\ 0 \text { to } 1000 \end{array}$	1	0.003	0 to 1800	1	0.005
	$\begin{aligned} & 0.0 \text { to } 700.0 \\ & -200.0 \text { to } 1000.0 \end{aligned}$	0.1		-	-	-
N	0 to 1300	1	0.006	0 to 2300	1	0.011
	0.0 to 1000.0	0.1		-	-	-
U	$\begin{aligned} & \hline 0 \text { to } 400 \\ & -200 \text { to } 200 \end{aligned}$	1	0.004	$\begin{aligned} & 0 \text { to } 700 \\ & -300 \text { to } 400 \end{aligned}$	1	0.009
	0.0 to 600.0	0.1		-	-	-
L	$\begin{aligned} & 0 \text { to } 400 \\ & 0 \text { to } 900 \end{aligned}$	1	0.003	$\begin{aligned} & 0 \text { to } 800 \\ & 0 \text { to } 1600 \end{aligned}$	1	0.006
	$\begin{aligned} & 0.0 \text { to } 400.0 \\ & 0.0 \text { to } 900.0 \end{aligned}$	0.1		-	-	-
PLII	0 to 1200	1	0.005	0 to 2300	1	0.010
W5Re/W26Re	0 to 2300	1	0.017	0 to 3000	1	0.021

*3 The following lists selectable current sensors.

A1S62TCTTBW-S2

- CTL-12-S36-8 (0.0 to 100.0A)
- CTL-6-P-H (0.0~20.00A) (The conventional CTL-6-P is also available.)

R60TCTRT2TT2BW

Model	Contact
CTL-12-S36-10 (0.0 to 100.0A)	U.R.D. Co., LTD.
CTL-12-S56-10 (0.0 to 100.0A)	
CTL-6-P-H (0.0.r.com/english to 20.00A)	
CTL-6-S-H (0.00 to 20.00A)	
CTL-12L-8 (0.0 to 100.0A)	

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S62TCRT-S2 and R60TCRT4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S62TCRT-S2	R60TCRT4		
Control output		Transistor output		\bigcirc	
Number of temperature input points		2 channels/module	4 channels/module	\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	Full scale $\times(\pm 0.3 \%)$ (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%)$ (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	\bigcirc	
Sampling cycle		500 ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCRT4.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		PID ON/OFF pulse or two-position control		\bigcirc	
PID constants range	PID constants setting	Setting can be made by auto-tuning or self-tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	0.0 to 1000.0\%	0.0 to 1000.0\% (0: 2-position control)	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	$0.4 \mathrm{~A}, 10 \mathrm{~ms}$		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to E^{2} PROM		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	
Withstand voltage		Between input terminal and programmable controller power supply: 500VAC for 1 minute Between input channels: 500VAC for 1 minute		\bigcirc	

Item	Specifications		Compatibility	Precautions
	A1S62TCRT-S2	R60TCRT4		
Insulation resistance	Between input terminal and programmable controller power supply: 500VDC 10M or more Between input channels: $500 \mathrm{VDC} 10 \mathrm{M} \Omega$ or more	Between input terminal and programmable controller power supply: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more	\bigcirc	
External interface	20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR62TR), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size	0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal	$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	-	
Number of occupied I/O points	32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)	0.19A	0.28A	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight	0.25 kg	0.22 kg	-	

*1 The following table lists temperature sensors usable for the A1S62TCRT-S2.

Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
Pt100	-200.0 to 600.0	0.1	-300 to 1100	1
JPt100	-200.0 to 200.0	-300.0 to 300.0	0.1	
	-200.0 to 500.0	0.1	-300 to 900	1

*2 The following table lists temperature sensors usable for the R60TCRT4.

Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
	Temperature measuring range	Resolution	Temperature measuring range	Resolution
Pt100	-200.0 to 600.0	0.1	-300 to 1100	1
JPt100	-200.0 to 200.0	-300.0 to 300.0	0.1	
	-200.0 to 850.0	0.1	-300 to 900	1

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1S62TCRTBW-S2 and R60TCRT4BW

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1S62TCRTBW-S2	R60TCRT4BW		
Control output		Transistor output		\bigcirc	
Number of temperature input points		2 channels/module	4 channels/module	\bigcirc	
Applicable temperature sensor		*1	*2	\bigcirc	
Accuracy	Indication accuracy	Full scale $\times(\pm 0.3 \%) \pm 1$ digit (Ambient temperature: $25 \pm 5^{\circ} \mathrm{C}$) Full scale $\times(\pm 0.7 \%) \pm 1$ digit (Ambient temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { Full scale } \times(\pm 0.3 \%) \text { (Ambient } \\ & \text { temperature: } \left.25 \pm 5^{\circ} \mathrm{C}\right) \\ & \text { Full scale } \times(\pm 0.7 \%) \text { (Ambient } \\ & \text { temperature: } \left.0^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C}\right) \end{aligned}$	\bigcirc	
Sampling cycle		500ms (Constant regardless of the number of channels used)	Switchable between $250 \mathrm{~ms} / 4$ channels and $500 \mathrm{~ms} / 4$ channels	\bigcirc	The sampling cycle is selectable in the R60TCRT4BW.
Control output cycle		1 to 100s	0.5 to 100s	\bigcirc	
Input impedance		$1 \mathrm{M} \Omega$		\bigcirc	
Input filter		0 to 100s		\bigcirc	
Sensor correction value setting		-50.00 to 50.00\%		\bigcirc	
Operation at a sensor input disconnection		Upscale processing		\bigcirc	
Temperature control method		PID ON/OFF pulse or two-position control		\bigcirc	
PID constants range	PID constants setting	Setting can be made by auto-tuning or self-tuning.	Setting can be made by auto tuning.	\bigcirc	
	Proportional band (P)	0.0 to 1000.0\%	0.0 to 1000.0\% (0: 2-position control)	\bigcirc	
	Integral time (I)	1 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
	Derivative time (D)	0 to 3600s	0 to 3600s (Set 0 for P control and PD control.)	\bigcirc	
Set value (SV) setting range		Within the temperature range set for the temperature sensor to be used		\bigcirc	
Transistor output	Output signal	ON/OFF pulse		\bigcirc	
	Rated load voltage	10.2 to 30.0VDC	10 to 30.0VDC	\bigcirc	
	Maximum load current	$0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common		\bigcirc	
	Maximum inrush current	$0.4 \mathrm{~A}, 10 \mathrm{~ms}$		\bigcirc	
	Leakage current at OFF	0.1 mA or lower		\bigcirc	
	Maximum voltage drop at ON	0.1 A at 1.0 VDC (TYP.) 0.1 A at 2.5 VDC (MAX.)		\bigcirc	
	Response time	Off \rightarrow on: 2 ms or less On \rightarrow off: 2 ms or less		\bigcirc	
Number of writes to $\mathrm{E}^{2} \mathrm{PROM}$		10^{12} times maximum (number of FeRAM read/write)	10^{12} times maximum (writes to nonvolatile memory)	\bigcirc	
Insulation method		Between input terminal and programmable controller power supply: Transformer Between input channels: Transformer		\bigcirc	
Withstand voltage		Between input terminal and programmable controller power supply: 500VAC for 1 minute Between input channels: 500VAC for 1 minute		\bigcirc	

Item		Specifications		Compatibility	Precautions
		A1S62TCRTBW-S2	R60TCRT4BW		
Insulation resistance		Between input terminal and programmable controller power supply: 500VDC 10M Ω or more Between input channels: 500VDC 10M Ω or more	Between input terminal and programmable controller power supply: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more Between input channels: $500 \mathrm{VDC} 20 \mathrm{M} \Omega$ or more	\bigcirc	
Heater disconnection detection specifications	Current sensor	*3		\bigcirc	
	Input accuracy	Full scale $\times(\pm 1.0 \%)$		\bigcirc	
	Number of alert delay	3 to 255		\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	18-point terminal block (M3 $\times 6$ screws) $\times 2$	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR62TR1BW), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*} 4$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.3 to $0.75 \mathrm{~mm}^{2}$ (22 to 18 AWG)	\times	
Applicable solderless terminal		R1.25-3, 1.25-YS3, RAV1.25-3, V1.25-YS3A	R1.25-3 (A solderless terminal with an insulation sleeve cannot be used.)	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	32 points, 2 slots (I/O assignment: empty 16 points + intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption(5VDC)		0.28A	0.31A	-	
External dimensions		$130(\mathrm{H}) \times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	106(H) $\times 56(\mathrm{~W}) \times 110$ (D) mm	-	
Weight		0.28 kg	0.34 kg	-	

*1 The following table lists temperature sensors usable for the A1S62TCRTBW-S2.

Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
	Temperature measurement range	Resolution	Temperature measurement range	Resolution
Pt100	-200.0 to 600.0			
-200.0 to 200.0	0.1	-300 to 1100	1	
JPt100	-200.0 to 500.0		-300.0 to 300.0	0.1

*2 The following table lists temperature sensors usable for the R60TCRT4BW.

Platinum resistance thermometer type	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$	
	Temperature measuring range	Resolution	Temperature measuring range	Resolution
Pt100	$\begin{aligned} & -200.0 \text { to } 600.0 \\ & -200.0 \text { to } 200.0 \\ & -200.0 \text { to } 850.0 \end{aligned}$	0.1	-300 to 1100	1
			-300.0 to 300.0	0.1
JPt100	$\begin{aligned} & -200.0 \text { to } 500.0 \\ & -200.0 \text { to } 200.0 \\ & -200.0 \text { to } 640.0 \end{aligned}$	0.1	-300 to 900	1
			-300.0 to 300.0	0.1

*3 The following lists selectable current sensors.
A1S62TCRTBW-S2

- CTL-12-S36-8 (0.0 to 100.0A)
- CTL-6-P-H (0.0~20.00A) (The conventional CTL-6-P is also available.)

R60TCRT4BW

Model	Contact
CTL-12-S36-10 (0.0 to 100.0A)	U.R.D. Co., LTD. www.u-rd.com/english
CTL-12-S56-10 (0.0 to 100.0 A$)$	
CTL-6-P-H (0.00 to 20.00 A$)$	
CTL-6-S-H (0.00 to 20.00 A$)$	
CTL-12L-8 (0.0 to 100.0 A$)$	

*4 For an upgrade tool, please consult your local Mitsubishi Electric representative.

7.3 Function Comparison Tables

Analog input modules

A1S64AD/A1S68AD and R60AD4/R60ADV8/R60ADI8/R60AD8-G

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-AnS/QnAS series		MELSEC iQ-R	Precautions
		A1S64AD	A1S68AD	R60AD4 R60ADV8 R60ADI8 R60AD8-G	
A/D conversion enable/disable function	Whether to enable or disable A/D conversion is set with this function. Disabling the conversion on unused channels reduces the sampling time.	\bigcirc	\bigcirc	\bigcirc	
Sampling processing	The A/D conversion for analog input values is performed successively for each channel, and a digital output value is output upon each conversion.	\bigcirc	\bigcirc	\bigcirc	
Averaging processing	For each channel, A/D conversion values are averaged for the set number of times or set amount of time, and the average value is output as a digital value.	\bigcirc	\bigcirc	\bigcirc	
Resolution mode	The resolution can be switched according to the application. The resolution mode is batch-set for all channels.	\bigcirc	\times	\triangle	When the resolution mode is not available, use the scaling function instead.

Analog output modules

A1S62DA/A1S68DAVIA1S68DAI and R60DA4/R60DAV8/R60DAI8

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-AnS/QnAS series		MELSEC iQ-R	Precautions
		A1S62DA	A1S68DAV A1S68DAI	R60DA4 R60DAV8 R60DAI8	
D/A conversion enable/disable function	Whether to enable or disable D/A conversion is set with this function.	\bigcirc	\bigcirc	\bigcirc	
D/A output enable/disable function	Whether to output the D/A conversion value or offset value is set.	\bigcirc	\bigcirc	\bigcirc	
Analog output HOLD/CLEAR function	The analog value output is held when the programmable controller CPU is in the STOP status or when an error occurs.	\bigcirc	\bigcirc	\bigcirc	
Analog output test while the programmable controller CPU is in the STOP status	Outputs an analog value converted from a digital value when 'CHD Output enable/disable flag' is forcibly turned on while the programmable controller CPU is in the STOP status.	\bigcirc	\bigcirc	\bigcirc	
Resolution mode	The resolution mode is switched with this function, according to the application. The resolution is selectable between $1 / 4000$ and $1 /$ 12000. The resolution mode is batch-set for all channels.	\bigcirc	\times	\triangle	When the resolution mode is not available, use the scaling function instead.

Temperature input modules

A1S68TD and R60TD8-G

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable
\($$
\begin{array}{l|l|l|l|l}\hline \text { Function } & & \begin{array}{l}\text { MELSEC-AnS/ } \\
\text { QnAS series }\end{array} & \begin{array}{l}\text { MELSEC iQ-R } \\
\text { series }\end{array}
$$ \& Precautions

\)\cline { 3 - 5 } \& A1S68TD \& R60TD8-G\end{array}$]$| |
| :--- |
| Temperature
 conversion function
 (Temperature
 conversion value
 storage) |
| Conversion enable/
 disable function |
| (Stores obtained temperature data in the buffer memory.) |

A1S68RD3N/A1S68RD4N and R60RD8-G

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Precautions
	A1S62RD3N	R60RD8-G		
Conversion enable/ disable specification of each channel	Enables/disables a detection of temperature.	\bigcirc	\bigcirc	
Sampling/averaging processing selection	Processes the detected temperature by specified method.	\bigcirc	\bigcirc	
Detected temperature value storage	Stores temperature data in the buffer memory.	\bigcirc	\bigcirc	
Disconnection detection	Detects a disconnection of connected RTDs or cables.	\bigcirc	\bigcirc	
Specification of RTD type	Specifies an RTD type to be used.	\bigcirc	\bigcirc	Correct the error using the offset/ gain setting of the R60RD8-G.
Error correction function	Corrects an error in temperature conversion values.	\bigcirc	\bigcirc	

Heating-cooling temperature control/Temperature control

 modules
A1S64TCTRT/A1S64TCTT-S1 and R60TCTRT2TT2/R60TCRT4 etc.

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function

7.4 Precautions for Replacement

Wiring

The sizes of wires or solderless terminals that can be used for terminal blocks vary between MELSEC iQ-R series and MELSEC-AnS/QnAS series, since modules and terminal blocks of the MELSEC iQ-R series are smaller than those of the MELSEC-AnS/QnAS series.

When replacing MELSEC-AnS/QnAS series modules with MELSEC iQ-R series modules, use wires and solderless terminals that meet the specifications of MELSEC iQ-R series modules.

The wiring change is not required when the upgrade tool conversion adapter is used for replacement.

Dedicated instructions

The dedicated instructions differ between the MELSEC-AnS/QnAS series and the MELSEC iQ-R series.
When dedicated instructions are used in the MELSEC-AnS/QnAS series program, the program needs to be corrected for MELSEC iQ-R series.

I/O signals and buffer memory areas

The assignments of I/O signals and buffer memory areas differ between the MELSEC-AnS/QnAS series and the MELSEC iQR series.

When the I/O signals and buffer memory areas are used in the MELSEC-AnS/QnAS series program, the program needs to be corrected for the MELSEC iQ-R series.

Resolution mode switching function

The MELSEC iQ-R series modules do not support the resolution mode switching function because the resolution has already been enhanced.

Values are converted to the range equivalent to that of MELSEC-AnS/QnAS series by using the scaling function.

Temperature conversion system

For the MELSEC iQ-R series, setting values of the averaging processing in the temperature conversion system are changed because the conversion speed is enhanced. When the averaging processing is used in a MELSEC-AnS/QnAS series program, the program needs to be corrected for the MELSEC iQ-R series.

Disconnection detection function

When the analog output range of a MELSEC iQ-R series analog output module is 4 to 20 mA , this function operates all the time.
When disconnection detection is not required, set another analog output range.

Point ρ
For details on these precautions, refer to the following.
LDMELSEC iQ-R Module Configuration Manual
[]MMELSEC iQ-R Analog-Digital Converter Module User's Manual (Startup)
[]MMELSEC iQ-R Analog-Digital Converter Module User's Manual (Application)
$\square] M E L S E C$ iQ-R Channel Isolated Analog-Digital Converter Module User's Manual (Startup)
LDMELSEC iQ-R Channel Isolated Analog-Digital Converter Module User's Manual (Application)
$\square \square M E L S E C$ iQ-R Digital-Analog Converter Module User's Manual (Startup)
[DMELSEC iQ-R Digital-Analog Converter Module User's Manual (Application)
[DMMELSEC iQ-R Channel Isolated Thermocouple Input Module/Channel Isolated RTD Input Module User's Manual (Startup)
LIMMELSEC iQ-R Channel Isolated Thermocouple Input Module/Channel Isolated RTD Input Module User's Manual (Application)
[]MELSEC iQ-R Temperature Control Module User's Manual (Startup)
[$]$ MELSEC iQ-R Temperature Control Module User's Manual (Application)

8.1 Alternative Model List

This section lists alternative models of the MELSEC iQ-R series positioning modules and pulse I/O modules in accordance with the specifications and functions of the MELSEC-AnS/QnAS series positioning modules and pulse I/O modules. Select models that best suit your application considering the scope of control of MELSEC-AnS/QnAS series positioning modules and pulse I/O modules that are currently used, as well as the system specifications and extensibility after replacement.

Item	MELSEC-AnS/ QnAS series	MELSEC $\mathbf{i Q}-R$ series	Specification difference
Positioning module	A1SD70	None	-
	A1SD75M1 A1SD75M2 A1SD75M3	RD77MS2 RD77MS4	Consider replacing the existing modules with Simple Motion modules (RD77MS2/ RD77MS4). When replacing servo amplifiers and servo motors, please consult your local Mitsubishi Electric representative. For replacement of the MR-J2Sロ-B, refer to "Transition from MELSERVO-J2-Super/J2M Series to J4 Series Handbook" (L(NA)03093).
	A1SD75P1-S3 A1SD75P2-S3 A1SD75P3-S3	RD75P2 RD75P4 RD75D2 RD75D4	(1) External wiring: Changed (SCSI connector $\rightarrow 40$-pin connector, applicable wire size) (2) Number of slots: Not changed (3) Programs: I/O signals are changed, and buffer memory addresses are changed. (4) Specifications: Number of control axes is changed ($1 / 2 / 3$ axes $\rightarrow 2 / 4$ axes), starting time is changed, command pulse output system is changed (either differential driver or open collector), maximum output pulse. (5) Functions: Changed (Stepping motor mode is not available, indirect designation is not available, LED indication is not available.)

\(\left.$$
\begin{array}{l|l|l|l}\hline \text { Item } & \begin{array}{l}\text { MELSEC-AnS/ } \\
\text { QnAS series }\end{array} & \begin{array}{l}\text { MELSEC iQ-R } \\
\text { series }\end{array} & \begin{array}{l}\text { Specification difference }\end{array} \\
\begin{array}{l}\text { High-speed counter } \\
\text { module }\end{array} & \text { A1SD61 } & \text { RD62P2 } & \begin{array}{l}\text { (1) External wiring: Changed (Screw terminal block } \rightarrow \text { 40-pin connector. An upgrade tool } \\
\text { conversion adapter can be used. }{ }^{* 1} \text {) }\end{array}
$$

(2) Number of slots: Not changed

(3) Programs: The number of occupied I/O points is changed, I/O signals are changed,

buffer memory addresses are changed.\end{array}\right]\)| (4) Specifications: The counting speed switch setting is changed (50k/10kpps \rightarrow 200k/ |
| :--- |
| 100k/10kpps), counting speed (maximum) is changed, external input/output is changed. |
| (5) Functions: Not changed |

[^6]
8.2 Specification Comparison Tables

Positioning modules

A1SD75P1-S3/A1SD75P2-S3/A1SD75P3-S3 and RD75P2/RD75P4/RD75D2/RD75D4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SD75P1-S3/A1SD75P2-S3/ A1SD75P3-S3	RD75P2/RD75P4/RD75D2/ RD75D4		
Number of control axes		A1SD75P1-S3: 1 A1SD75P2-S3: 2 A1SD75P3-S3: 3	RD75P2/RD75D2: 2 RD75P4/RD75D4: 4	\bigcirc	The number of axes varies.
Interpolation function		A1SD75P1-S3: Not available A1SD75P2-S3/A1SD75P3-S3: 2axis linear interpolation, 2-axis circular interpolation	RD75P2/RD75D2: 2-axis linear interpolation, 2-axis circular interpolation RD75P4/RD75D4: 2-, 3-, or 4-axis linear interpolation, 2-axis circular interpolation, 3 -axis helical interpolation	\bigcirc	
Control method		PTP (Point To Point) control, path control (all of linear and circular can be set), speed control, speedposition switching control	PTP (Point To Point) control, path control (all of linear and circular can be set), speed control, speedposition switching control, positionspeed switching control	\bigcirc	
Control unit		mm, inch, degree, pulse		\bigcirc	
Positioning data		When set by a peripheral: 600 data/ axis When set by a sequence program: 100 data/axis	600 data/axis	\bigcirc	
Backup		Parameters and positioning data are saved on flash ROM (battery-less backup).	Positioning data and block start data can be saved on flash ROM (batteryless backup).	\bigcirc	
Positioning	Positioning system	PTP contro: Incremental system/absolute system		\bigcirc	
		Speed-position switching control: Incremental system	Speed-position switching control: Incremental system/absolute system Position-speed switching control: Incremental system		
		Path contro: Incremental system/absolute system			
Positioning	Positioning range	In absolute system: Standard mode -214748364.8 to $214748364.7 \mu \mathrm{~m}$, -21474.83648 to 21474.83647 inch, 0 to 359.99999 degree, -2147483648 to 2147483647 pulse Stepping motor mode -13421772.8 to $13421772.7 \mu \mathrm{~m}$, -1342.17728 to 1342.17727 inch, 0 to 359.99999 degree, -134217728 to 134217727 pulse	In absolute system: -214748364.8 to $214748364.7 \mu \mathrm{~m}$, -21474.83648 to 21474.83647 inch, 0 to 359.99999 degree, -2147483648 to 2147483647 pulse	\bigcirc	
		In incremental system: Standard mode -214748364.8 to $214748364.7 \mu \mathrm{~m}$, -21474.83648 to 21474.83647 inch, -21474.83648 to 21474.83647 degree, -2147483648 to 2147483647 pulse Stepping motor mode -13421772.8 to $13421772.7 \mu \mathrm{~m}$, -1342.17728 to 1342.17727 inch, -1342.17728 to 1342.17727 degree, -134217728 to 134217727 pulse	In incremental system: -214748364.8 to $214748364.7 \mu \mathrm{~m}$, -21474.83648 to 21474.83647 inch, -21474.83648 to 21474.83647 degree, -2147483648 to 2147483647 pulse		

Item		Specifications		Compatibility	Precautions
		A1SD75P1-S3/A1SD75P2-S3/ A1SD75P3-S3	RD75P2/RD75P4/RD75D2/ RD75D4		
Positioning	Positioning range	In position-speed switching control: Standard mode 0 to $214748364.7 \mu \mathrm{~m}$, 0 to 21474.83647 inch, 0 to 21474.83647 degree, 0 to 2147483647 pulse Stepping motor mode 0 to $13421772.7 \mu \mathrm{~m}$, 0 to 1342.17727 inch, 0 to 1342.17727 degree, 0 to 134217727 pulse	In speed-position switching control (INC mode)/position-speed switching control: 0 to $214748364.7 \mu \mathrm{~m}$, 0 to 21474.83647 inch, 0 to 21474.83647 degree, 0 to 2147483647 pulse In speed-position switching control (ABS mode): 0 to 359.99999 degree	\bigcirc	
	Speed command	Standard mode 0.01 to $6000000.00 \mathrm{~mm} / \mathrm{min}$, 0.001 to 600000.000 inch $/ \mathrm{min}$, 0.001 to 600000.000 degree/min, 1 to 1000000 pulse/s Stepping motor mode 0.01 to $375000.00 \mathrm{~mm} / \mathrm{min}$, 0.001 to $37500.000 \mathrm{inch} / \mathrm{min}$, 0.001 to 37500.000 degree $/ \mathrm{min}$, 1 to 62500 pulse/s	0.01 to $20000000.00 \mathrm{~mm} / \mathrm{min}$, 0.001 to $2000000.000 \mathrm{inch} / \mathrm{min}$, 0.001 to 3000000.000 degree/min, 1 to 5000000 pulse/s	\bigcirc	
	Acceleration/ deceleration process	Automatic trapezoidal acceleration/deceleration, S-pattern acceleration/ deceleration		\bigcirc	
	Acceleration/ deceleration time	The range is selectable between 1 to 65535 ms and 1 to 8388608 ms . Four patterns can be set for each of acceleration time and deceleration time.	1 to 8388608 ms Four patterns can be set for each of acceleration time and deceleration time.	\bigcirc	
	Sudden stop deceleration time	The range is selectable between 1 to 65535 ms and 1 to 8388608 ms .	1 to 8388608 ms	\bigcirc	
Starting time		20 ms	1 -axis linear control: 0.3 ms 1 -axis speed control: 0.3 ms 2-axis linear interpolation control (composite speed): 0.45 ms 2-axis linear interpolation control (reference axis speed): 0.45 ms 2-axis circular interpolation control: 0.63 ms 2-axis speed control: 0.63 ms 3-axis linear interpolation control (composite speed): 0.93 ms 3-axis linear interpolation control (reference axis speed): 0.93 ms 3 -axis helical interpolation control: 1.8 ms 3 -axis speed control: 0.93 ms 4-axis linear interpolation control: 1.08 ms 4-axis speed control: 1.08 ms	\triangle	Because the performance such as the starting time and refreshing cycle of data is enhanced, modify each program as needed while checking the timing of the processing.
Command pulse output system		Open collector, differential driver	RD75P2/RD75P4: Open collector RD75D2/RD75D4: Differential driver	\triangle	MELSEC iQ-R series modules support either an open collector or a differential driver, but not both of them.
Maximum output pulse		When connected to the open collector: 200kpps When connected to the differential driver: 400kpps	RD75P2/RD75P4: 200000 pulse/s RD75D2/RD75D4: 5000000 pulse/s	\bigcirc	
Maximum connection distance between servos		When connected to the open collector: 2 m When connected to the differential driver: 10 m	RD75P2/RD75P4: 2m RD75D2/RD75D4: 10m	\bigcirc	
Flash ROM write count		100000 times maximum		\bigcirc	

Item	Specifications		Compatibility	Precautions
	A1SD75P1-S3/A1SD75P2-S3/ A1SD75P3-S3	RD75P2/RD75P4/RD75D2/ RD75D4		
External interface	10136-3000VE, 10136-6000EL	40-pin connector (A6CON1/2/4)	\times	Wiring needs to be changed after replacement.
Applicable wire size	10136-3000V: 0.05 to $0.2 \mathrm{~mm}^{2}$ 10136-6000EL: $0.08 \mathrm{~mm}^{2}$	0.088 to $0.3 \mathrm{~mm}^{2}$	\times	
Number of occupied I/O points	32 points (I/O assignment: Special 32 points)	32 points (I/O assignment: Intelligent 32 points)	\bigcirc	
Internal current consumption (5VDC)	0.70A or lower (When the differential driver of the A1SD75P3-S3 is connected: 0.78 A)	RD75P2: 0.38A RD75P4: 0.42A RD75D2: 0.54A RD75D4: 0.78A	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight	0.35 kg	RD75P2: 0.14kg RD75P4/RD75D2/RD75D4: 0.15kg	-	

High-speed counter modules

A1SD61 and RD62P2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SD61	RD62P2		
Number of channels		1 channel	2 channels	\bigcirc	
Counting speed switch setting		50kpps, 10kpps	200kpps (100k to 200kpps), 100kpps (10k to 100kpps), 10kpps (10kpps or less)	\triangle	50 kpps cannot be set.
Count input signal	Phase	1-phase input, 2-phase input	1-phase input (1 multiple/2 multiples), 2-phase input (1 multiple/ 2 multiples/4 multiples), CW/CCW input	\bigcirc	
	Signal level ($\phi \mathrm{A}$, фB)	5/12/24VDC, 2 to 5mA		\bigcirc	
Counter	Counting speed (maximum)	1-phase input When 50 kpps is set: 50 kpps , When 10 kpps is set: 10 kpps 2-phase input When 50 kpps is set: 50 kpps , When 10 kpps is set: 7 kpps	When 200k is set: 200kpps When 100k is set: 100 kpps When 10 k is set: 10 kpps	\triangle	*1
	Counting range	32-bit signed binary: -2147483648 to 2147483647		\bigcirc	
	Type	UP/DOWN preset counter + ring counter function		\bigcirc	
	Minimum count pulse width (duty ratio: 50\%)	*2		\bigcirc	
Magnitude comparison	Comparison range	32-bit signed binary		\bigcirc	
	Comparison result	a contact: Dog ON address \leq Count value \leq Dog OFF address b contact: Dog OFF address \leq Count value \leq Dog ON address	Set value < Count value, Set value = Count value, Set value > Count value	\triangle	The number of settings is 2 points.
External input	Preset	5VDC 5mA, 12/24VDC 3/6mA	5/12/24VDC, 7 to 10 mA	\triangle	The external input specifications are different. Check the specifications of external devices.
	Function start				
External output		Limit switch output: Transistor (open collector) output 12/24VDC, $0.1 \mathrm{~A} /$ point, $0.8 \mathrm{~A} /$ common	Coincidence output: Transistor (sink type) output 2 points/channel 12/24VDC, 0.5A/point, 2A/common Current consumption of the external auxiliary power supply: 43 mA (TYP., 24 VDC and all points ON/common)	\triangle	The external output specifications are different. Check the specifications of external devices.
External interface		20-point terminal block (M3.5 $\times 7$ screws)	40-pin connector (A6CON1/2/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASLTD61), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.088 to $0.3 \mathrm{~mm}^{2}$	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	-	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)		0.35A (TYP. all points ON)	0.11 A (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5$ (W) $\times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	

Item	Specifications		Compatibility	Precautions
	A1SD61	RD62P2		
Weight	0.27 kg	0.11 kg	-	

*1 The counting speed is affected by the rise/fall time of pulses. A count can be performed with the following counting speed.
A1SD61

Counting speed switch setting	$\mathbf{5 0 K}$	10K		
Rise/fall time	1-phase input	2-phase input	1-phase input	2-phase input
$t=5 \mu$ s or less	50 kpps	50 kpps	10kpps	7 kpps
$\mathrm{t}=50 \mu \mathrm{~s}$ or less	5 kpps	5 kpps	1 kpps	700 pps
$\mathrm{t}=500 \mu \mathrm{~s}$	-	-	500 pps	250pps

RD62P2

Counting speed switch setting	200kpps	100kpps	10kpps
Rise/fall time	Common to 1-phase input and 2-phase input		
$\mathrm{t}=1.25 \mu$ s or less	200 kpps	100 kpps	10 kpps
$\mathrm{t}=2.5 \mu \mathrm{~s}$ or less	100 kpps	100 kpps	10 kpps
$\mathrm{t}=25 \mu \mathrm{~s}$ or less	-	10 kpps	10 kpps
$\mathrm{t}=500 \mu \mathrm{~s}$ or less	-	-	500 pps

*2 The following tables show the minimum count pulse width.
A1SD61

Counting speed switch setting	Waveform (duty ratio: 50\%)
(When 50KPPS is set)	(1-phase and 2-phase inputs)
(When 10KPPS is set) 1-phase input	(1-phase input)
(When 10KPPS is set) 2-phase input	(2-phase input)

RD62P2

Pulse input mode	Waveform (in up count, duty ratio: 50\%)	Minimum count pulse cycle, T, and phase difference, $\mathbf{t}(\mu \mathrm{s})$, at each counting speed		
		200kpps	100kpps	10kpps
1-phase multiple of 1		T = 5	$\mathrm{T}=10$	$\mathrm{T}=100$
1-phase multiple of 2		$\mathrm{T}=10$	$\mathrm{T}=20$	$\mathrm{T}=200$
CW/CCW		$\mathrm{T}=5$	$\mathrm{T}=10$	$\mathrm{T}=100$
2-phase multiple of 1		$\begin{aligned} & \mathrm{T}=5 \\ & \mathrm{t}=1.25 \end{aligned}$	$\begin{aligned} & \mathrm{T}=10 \\ & \mathrm{t}=2.5 \end{aligned}$	$\begin{aligned} & T=100 \\ & t=25 \end{aligned}$
2-phase multiple of 2		$\begin{aligned} & T=10 \\ & t=2.5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=20 \\ & \mathrm{t}=5 \end{aligned}$	$\begin{aligned} & T=200 \\ & t=50 \end{aligned}$
2-phase multiple of 4		$\begin{aligned} & T=20 \\ & t=5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=40 \\ & \mathrm{t}=10 \end{aligned}$	$\begin{aligned} & T=400 \\ & t=100 \end{aligned}$

[^7]
A1SD62 and RD62P2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SD62	RD62P2		
Number of channels		2 channels		\bigcirc	
Counting speed switch setting		100kpps, 10kpps	200kpps (100k to 200kpps), 100kpps (10k to 100kpps), 10kpps (10kpps or less)	\bigcirc	Set the counting speed switch setting of parameters to 100kpps or 10 kpps .
Count input signal	Phase	1-phase input, 2-phase input	1-phase input (1 multiple/2 multiples), 2-phase input (1 multiple/ 2 multiples/4 multiples), CW/CCW input	\bigcirc	
	Signal level ($\phi \mathrm{A}$, фB)	$5 / 12 / 24 \mathrm{VDC}, 2$ to 5 mA		\bigcirc	
Counter	Counting speed (maximum)	1-phase input When 100 kpps is set: 100 kpps , When 10 kpps is set: 10 kpps 2-phase input When 100 kpps is set: 100 kpps , When 10kpps is set: 7 kpps	When 200k is set: 200kpps, When 100 k is set: 100 kpps , When 10 k is set: 10kpps	\triangle	*1
	Counting range	24-bit unsigned binary: 0 to 16777215	32-bit signed binary: -2147483648 to 2147483647	\triangle	Data is changed from 24-bit unsigned binary to 32-bit signed binary.
	Type	UP/DOWN preset counter + ring counter function		\bigcirc	
	Minimum count pulse width (duty ratio: 50\%)	*2		\bigcirc	
Magnitude comparison	Comparison range	24-bit unsigned binary	32-bit signed binary	\triangle	Data is changed from 24-bit unsigned binary to 32-bit signed binary.
	Comparison result	Set value < Count value, Set value = Count value, Set value > Count value		\bigcirc	
External input	Preset	5/12/24VDC, 2 to 5 mA	5/12/24VDC, 7 to 10 mA	\bigcirc	
	Function start				
External output		Coincidence output: Transistor (sink type) output 1 point/channel 12/24VDC, 0.5A/point, 2A/common	Coincidence output: Transistor (sink type) output 2 points/channel 12/24VDC, 0.5A/point, 2A/common Current consumption of the external auxiliary power supply: 43 mA (TYP., 24VDC and all points ON/common)	\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	40-pin connector (A6CON1/2/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASLTD62), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.088 to $0.3 \mathrm{~mm}^{2}$	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	-	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)		0.1A (TYP. all points ON)	0.11 A (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.25 kg	0.11 kg	-	

*1 The counting speed is affected by the rise/fall time of pulses. A count can be performed with the following counting speed.
A1SD62

Counting speed switch setting	100K	10K		
Rise/fall time	1-phase input	2-phase input	1-phase input	2-phase input
$t=2.5 \mu$ s or less	100kpps	100kpps	10kpps	7kpps
$t=25 \mu \mathrm{~s}$ or less	10kpps	10kpps	1kpps	700pps
$t=500 \mu \mathrm{~s}$	-	-	500 pps	250pps

RD62P2

Counting speed switch setting	200kpps	100kpps	10kpps
Rise/fall time	Common to 1-phase input and 2-phase input	10kpps	
$t=1.25 \mu$ s or less	200kpps	100 kpps	10 kpps
$t=2.5 \mu$ s or less	100 kpps	100 kpps	10 kpps
$t=25 \mu$ s or less	-	10 kpps	500 pps
$t=500 \mu$ s or less	-	-	

*2 The following tables show the minimum count pulse width.

A1SD62

Counting speed switch setting (When 100KPPS is set) (When 10KPPS is set) 1-phase input (duty ratio: 50\%)
2-phase input

RD62P2

Pulse input mode	Waveform (in up count, duty ratio: 50\%)	Minimum count pulse cycle, T, and phase difference, $t(\mu s)$, at each counting speed		
		200kpps	100kpps	10kpps
1-phase multiple of 1		$\mathrm{T}=5$	$\mathrm{T}=10$	$\mathrm{T}=100$
1-phase multiple of 2		$\mathrm{T}=10$	$\mathrm{T}=20$	$\mathrm{T}=200$
CW/CCW		$\mathrm{T}=5$	$\mathrm{T}=10$	$\mathrm{T}=100$
2-phase multiple of 1		$\begin{aligned} & T=5 \\ & t=1.25 \end{aligned}$	$\begin{aligned} & \mathrm{T}=10 \\ & \mathrm{t}=2.5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=100 \\ & \mathrm{t}=25 \end{aligned}$
2-phase multiple of 2		$\begin{aligned} & T=10 \\ & t=2.5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=20 \\ & \mathrm{t}=5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=200 \\ & \mathrm{t}=50 \end{aligned}$
2-phase multiple of 4		$\begin{aligned} & T=20 \\ & t=5 \end{aligned}$	$\begin{aligned} & T=40 \\ & t=10 \end{aligned}$	$\begin{aligned} & \mathrm{T}=400 \\ & \mathrm{t}=100 \end{aligned}$

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SD62E and RD62P2E

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SD62E	RD62P2E		
Number of channels		2 channels		\bigcirc	
Counting speed switch setting		100kpps, 10kpps	```200kpps (100k to 200kpps), 100kpps (10k to 100kpps), 10kpps (10kpps or less)```	\bigcirc	Set the counting speed switch setting of parameters to 100 kpps or 10kpps.
Count input signal	Phase	1-phase input, 2-phase input	1-phase input (1 multiple/2 multiples), 2-phase input (1 multiple/ 2 multiples/4 multiples), CW/CCW input	\bigcirc	
	Signal level ($\phi \mathrm{A}$, фB)	5/12/24VDC, 2 to 5 mA		\bigcirc	
Counter	Counting speed (maximum)	1-phase input When 100 kpps is set: 100 kpps , When 10 kpps is set: 10 kpps 2-phase input When 100 kpps is set: 100 kpps , When 10kpps is set: 7 kpps	When 200k is set: 200kpps, When 100 k is set: 100 kpps , When 10 k is set: 10kpps	\triangle	*1
	Counting range	24-bit unsigned binary: 0 to 16777215	32-bit signed binary: -2147483648 to 2147483647	\triangle	Data is changed from 24-bit unsigned binary to 32-bit signed binary.
	Type	UP/DOWN preset counter + ring counter function		\bigcirc	
	Minimum count pulse width (duty ratio: 50\%)	*2		\bigcirc	
Magnitude comparison	Comparison range	24-bit unsigned binary	32-bit signed binary	\triangle	Data is changed from 24-bit unsigned binary to 32-bit signed binary.
	Comparison result	Set value < Count value, Set value = Count value, Set value > Count value		\bigcirc	
External input	Preset	5/12/24VDC, 2 to 5 mA	$5 / 12 / 24 \mathrm{VDC}, 7$ to 10 mA	\bigcirc	
	Function start				
External output		Coincidence output: Transistor (source type) output 1 point/channel 12/24VDC, $0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common	Coincidence output: Transistor (source type) output 2 points/channel 12/24VDC, $0.4 \mathrm{~A} /$ point, $0.4 \mathrm{~A} /$ common Current consumption of the external auxiliary power supply: 43 mA (TYP., 24VDC and all points ON/common)	\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	40-pin connector (A6CON1/2/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNTASLTD62), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{* 3}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.088 to $0.3 \mathrm{~mm}^{2}$	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	-	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.
Internal current consumption (5VDC)		0.1 A (TYP. all points ON)	0.20A (TYP. all points ON)	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.25 kg	0.12 kg	-	

*1 The counting speed is affected by the rise/fall time of pulses. A count can be performed with the following counting speed.
A1SD62E

Counting speed switch setting	100K	10K		
Rise/fall time	1-phase input	2-phase input	1-phase input	2-phase input
$t=2.5 \mu$ s or less	100kpps	100kpps	10kpps	7kpps
$t=25 \mu \mathrm{~s}$ or less	10 kpps	10 kpps	1kpps	700pps
$\mathrm{t}=500 \mu \mathrm{~s}$	-	-	500 pps	250pps

RD62P2E

Counting speed switch setting	200kpps	100kpps	10kpps
Rise/fall time	Common to 1-phase input and 2-phase input		
$t=1.25 \mu$ s or less	200kpps	100 kpps	10kpps
$t=2.5 \mu$ s or less	100 kpps	100 kpps	10 kpps
$t=25 \mu$ s or less	-	10 kpps	10 kpps
$t=500 \mu$ s or less	-	-	500 pps

*2 The following tables show the minimum count pulse width.
A1SD62E

Counting speed switch setting (When 100KPPS is set) (When 10KPPS is set) 1-phase input (duty ratio: 50\%)
2-phase input

RD62P2E

Pulse input mode	Waveform (in up count, duty ratio: 50\%)	Minimum count pulse cycle, T, and phase difference, $t(\mu s)$, at each counting speed		
		200kpps	100kpps	10kpps
1-phase multiple of 1	ΦB and CH1 Down count command \qquad (Y3)	T = 5	$\mathrm{T}=10$	T = 100
1-phase multiple of 2	ΦB and CH1 Down count command \qquad (Y3)	$\mathrm{T}=10$	$\mathrm{T}=20$	$\mathrm{T}=200$
CW/CCW		$\mathrm{T}=5$	$\mathrm{T}=10$	$\mathrm{T}=100$
2-phase multiple of 1		$\begin{aligned} & \mathrm{T}=5 \\ & \mathrm{t}=1.25 \end{aligned}$	$\begin{aligned} & T=10 \\ & t=2.5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=100 \\ & \mathrm{t}=25 \end{aligned}$
2-phase multiple of 2		$\begin{aligned} & \mathrm{T}=10 \\ & \mathrm{t}=2.5 \end{aligned}$	$\begin{aligned} & T=20 \\ & t=5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=200 \\ & \mathrm{t}=50 \end{aligned}$
2-phase multiple of 4		$\begin{aligned} & T=20 \\ & t=5 \end{aligned}$	$\begin{aligned} & T=40 \\ & t=10 \end{aligned}$	$\begin{aligned} & T=400 \\ & t=100 \end{aligned}$

[^8]
A1SD62D and RD62D2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SD62D	RD62D2		
Number of channels		2 channels		\bigcirc	
Counting speed switch setting		200kpps, 10kpps	$8 \mathrm{Mpps}(4 \mathrm{M}$ to 8 Mpps), 4Mpps (2M to 4Mpps), 2Mpps (1 M to 2 Mpps), 1 Mpps (500 k to 1 Mpps), 500kpps (200k to 500 kpps), 200kpps (100k to 200kpps), 100 kpps (10 k to 100 kpps), 10kpps (10kpps or less)	\bigcirc	Set the counting speed switch setting of parameters to 200kpps or 10 kpps .
Count input signal	Phase	1-phase input, 2-phase input	1-phase input (1 multiple/2 multiples), 2-phase input (1 multiple/ 2 multiples/4 multiples), CW/CCW input	\bigcirc	
	Signal level ($\phi \mathrm{A}$, фB)	EIA Standard RS-422-A differential line driver level (AM26LS31 (manufactured by Texas Instruments Japan Limited.) or equivalent)		\bigcirc	
Counter	Counting speed (maximum)	1-phase input When 200kpps is set: 200kpps, When 10kpps is set: 10 kpps 2-phase input When 200kpps is set: 200kpps, When 10 kpps is set: 7 kpps	When 8 M is set: 8 Mpps When 4M is set: 4 Mpps When 2M is set: 2Mpps When 1 M is set: 1 Mpps When 500 k is set: 500 kpps When 200k is set: 200 kpps When 100k is set: 100 kpps When 10k is set: 10 kpps	\triangle	*1
	Counting range	24-bit unsigned binary: 0 to 16777215	32-bit signed binary: -2147483648 to 2147483647	\triangle	Data is changed from 24-bit unsigned binary to 32-bit signed binary.
	Type	UP/DOWN preset counter + ring counter function		\bigcirc	
	Minimum count pulse width (duty ratio: 50\%)	*2		\bigcirc	
Magnitude comparison	Comparison range	24-bit unsigned binary	32-bit signed binary	\triangle	Data is changed from 24-bit unsigned binary to 32-bit signed binary.
	Comparison result	Set value < Count value, Set value $=$ Count value, Set value > Count value		\bigcirc	
External input	Preset	5/12/24VDC, 2 to 5 mA	$5 / 12 / 24 \mathrm{VDC}, 7$ to 10 mA	\bigcirc	
	Function start				
External output		Coincidence output: Transistor (sink type) output 1 point/channel 12/24VDC, 0.5A/point, 2A/common	Coincidence output: Transistor (sink type) output 2 points/channel 12/24VDC, 0.5A/point, 2A/common Current consumption of the external auxiliary power supply: 43 mA (TYP., 24VDC and all points ON/common)	\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	40-pin connector (A6CON1/2/4)	\times	Wiring needs to be changed after replacement. By using the upgrade tool conversion adapter (ERNT2AR62DD), the existing external wiring and terminal blocks in the existing system can be used. ${ }^{*}{ }^{3}$
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.088 to $0.3 \mathrm{~mm}^{2}$	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	-	-	
Number of occ	ied I/O points	32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.

Item	Specifications		RD62D2	Compatibility	Precautions
	A1SD62D	$0.17 \mathrm{~A}($ TYP. all points ON)	-		
Internal current consumption (5VDC)	$0.25 \mathrm{~A}($ TYP. all points ON)	$106(\mathrm{H}) \times 27.8(\mathrm{~W}) \times 110(\mathrm{D}) \mathrm{mm}$	-		
External dimensions	$130(\mathrm{H}) \times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	0.12 kg	-		
Weight	0.25 kg				

*1 The counting speed is affected by the rise/fall time of pulses. A count can be performed with the following counting speed.
A1SD62D

Counting speed switch setting	200K	10K		
Rise/fall time	1-phase input	2-phase input	1-phase input	2-phase input
$t=1.25 \mu \mathrm{~s}$ or less	200kpps	200kpps	10kpps	7kpps
$t=12.5 \mu \mathrm{~s}$ or less	20kpps	20kpps	1kpps	700pps
$t=250 \mu \mathrm{~s}$	-	-	500 pps	250pps

RD62D2

Counting speed switch setting	8Mpps 4Mpps 2Mpps	1Mpps	500kpps	200kpps	100kpps	10kpps
Rise/fall time	Common to 1-phase input and 2-phase input					
$t=0.125 \mu \mathrm{~s}$ or less	2Mpps	1Mpps	500kpps	200kpps	100kpps	10kpps
$t=0.25 \mu$ or less	1Mpps	1Mpps	500kpps	200kpps	100kpps	10kpps
$t=0.5 \mu \mathrm{~s}$ or less	-	500kpps	500kpps	200kpps	100kpps	10kpps
$t=1.25 \mu \mathrm{~s}$ or less	-	-	200kpps	200kpps	100kpps	10kpps
$t=2.5 \mu \mathrm{~s}$ or less	-	-	-	100kpps	100kpps	10kpps
$t=25 \mu \mathrm{~s}$ or less	-	-	-	-	10kpps	10kpps
$t=500 \mu$ or less	-	-	-	-	-	500pps

*2 The following tables show the minimum count pulse width.
A1SD62D
Counting speed switch
setting
(When 200KPPS is set)
(When 10KPPS is set)
1-phase input

Counting speed switch setting	Waveform (duty ratio: 50\%)
(When 10KPPS is set) 2-phase input	

RD62D2

Pulse input mode	Waveform (in up count, duty ratio: 50\%)	Minimum count pulse cycle, T, and phase difference, $\mathbf{t}(\mu \mathrm{s})$, at each counting speed							
		8Mpps	4Mpps	2Mpps	1Mpps	500kpps	200kpps	100kpps	10kpps
1-phase multiple of 1		-	-	$\mathrm{T}=0.5$	$\mathrm{T}=1$	$\mathrm{T}=2$	T = 5	$\mathrm{T}=10$	$\mathrm{T}=100$
1-phase multiple of 2		-	$\mathrm{T}=0.5$	$\mathrm{T}=1$	$\mathrm{T}=2$	$\mathrm{T}=4$	$\mathrm{T}=10$	$\mathrm{T}=20$	$\mathrm{T}=200$
CW/CCW		-	-	$\mathrm{T}=0.5$	$\mathrm{T}=1$	$\mathrm{T}=2$	$\mathrm{T}=5$	$\mathrm{T}=10$	$\mathrm{T}=100$
2-phase multiple of 1		-	-	$\begin{aligned} & T=0.5 \\ & t=0.125 \end{aligned}$	$\begin{aligned} & T=1 \\ & t=0.25 \end{aligned}$	$\begin{aligned} & T=2 \\ & t=0.5 \end{aligned}$	$\begin{aligned} & T=5 \\ & t=1.25 \end{aligned}$	$\begin{aligned} & T=10 \\ & t=2.5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=100 \\ & \mathrm{t}=25 \end{aligned}$
2-phase multiple of 2		-	$\begin{aligned} & T=0.5 \\ & t=0.125 \end{aligned}$	$\begin{aligned} & \mathrm{T}=1 \\ & \mathrm{t}=0.25 \end{aligned}$	$\begin{aligned} & T=2 \\ & t=0.5 \end{aligned}$	$\begin{aligned} & T=4 \\ & t=1 \end{aligned}$	$\begin{aligned} & T=10 \\ & t=2.5 \end{aligned}$	$\begin{aligned} & T=20 \\ & t=5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=200 \\ & \mathrm{t}=50 \end{aligned}$
$\begin{aligned} & \text { 2-phase } \\ & \text { multiple of } \\ & 4 \end{aligned}$		$\begin{aligned} & T=0.5 \\ & t=0.125 \end{aligned}$	$\begin{aligned} & T=1 \\ & t=0.25 \end{aligned}$	$\begin{aligned} & T=2 \\ & t=0.5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=4 \\ & \mathrm{t}=1 \end{aligned}$	$\begin{aligned} & \mathrm{T}=8 \\ & \mathrm{t}=2 \end{aligned}$	$\begin{aligned} & T=20 \\ & t=5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=40 \\ & \mathrm{t}=10 \end{aligned}$	$\begin{aligned} & \mathrm{T}=400 \\ & \mathrm{t}=100 \end{aligned}$

*3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

A1SD62D-S1 and RD62D2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SD62D-S1	RD62D2		
Number of channels		2 channels		\bigcirc	
Counting speed switch setting		200kpps, 10kpps	$8 \mathrm{Mpps}(4 \mathrm{M}$ to 8 Mpps), 4 Mpps (2 M to 4 Mpps), 2 Mpps (1 M to 2 Mpps), 1 Mpps (500 k to 1 Mpps), 500kpps (200k to 500 kpps), 200kpps (100k to 200kpps), 100 kpps (10 k to 100 kpps), 10 kpps (10kpps or less)	\bigcirc	Set the counting speed switch setting of parameters to 200kpps or 10 kpps .
Count input signal	Phase	1-phase input, 2-phase input	1-phase input (1 multiple/2 multiples), 2-phase input (1 multiple/ 2 multiples/4 multiples), CW/CCW input	\bigcirc	
	Signal level ($\phi \mathrm{A}$, $\phi B)$	EIA Standard RS-422-A differential line driver level (AM26LS31 (manufactured by Texas Instruments Japan Limited.) or equivalent)		\bigcirc	
	Counting speed (maximum)	1-phase input When 200kpps is set: 200 kpps , When 10kpps is set: 10 kpps 2-phase input When 200kpps is set: 200kpps, When 10kpps is set: 7 kpps	When 8 M is set: 8 Mpps When 4 M is set: 4 Mpps When 2M is set: 2Mpps When 1M is set: 1 Mpps When 500 k is set: 500 kpps When 200k is set: 200kpps When 100k is set: 100 kpps When 10k is set: 10 kpps	\triangle	*1
	Counting range	24-bit unsigned binary: 0 to 16777215	32-bit signed binary: -2147483648 to 2147483647	\triangle	Data is changed from 24-bit unsigned binary to 32-bit signed binary.
	Type	UP/DOWN preset counter + ring counter function		\bigcirc	
	Minimum count pulse width (duty ratio: 50\%)	*2		\bigcirc	
Magnitude comparison	Comparison range	24-bit unsigned binary	32-bit signed binary	\triangle	Data is changed from 24-bit unsigned binary to 32-bit signed binary.
	Comparison result	Set value < Count value, Set value = Count value, Set value > Count value		\bigcirc	
External input	Preset	EIA Standard RS-422-A differential line driver level (equivalent to the AM26LS31)	$5 / 12 / 24 \mathrm{VDC}, 7$ to 10 mA	\triangle	The external input (preset) specifications are different. Check the specifications of external devices.
	Function start	5/12/24VDC, 2 to 5mA		\bigcirc	
External output		Coincidence output: Transistor (sink type) output 1 point/channel 12/24VDC, $0.5 \mathrm{~A} /$ point, 2A/common	Coincidence output: Transistor (sink type) output 2 points/channel $12 / 24 \mathrm{VDC}, 0.5 \mathrm{~A} /$ point, $2 \mathrm{~A} /$ common Current consumption of the external auxiliary power supply: 43 mA (TYP., 24VDC and all points ON/common)	\bigcirc	
External interface		20-point terminal block (M3.5 $\times 7$ screws)	40-pin connector (A6CON1/2/4)	\times	Wiring needs to be changed after replacement.
Applicable wire size		0.75 to $1.5 \mathrm{~mm}^{2}$	0.088 to $0.3 \mathrm{~mm}^{2}$	\times	
Applicable solderless terminal		$\begin{aligned} & \text { R1.25-3, 1.25-YS3, RAV1.25-3, } \\ & \text { V1.25-YS3A } \end{aligned}$	-	-	
Number of occupied I/O points		32 points (I/O assignment: Special 32 points)	16 points (I/O assignment: Intelligent 16 points)	\triangle	The number of occupied I/O points is changed after replacement.

Item	Specifications		Compatibility	Precautions
	A1SD62D-S1	RD62D2		
Internal current consumption (5VDC)	$0.25 \mathrm{~A}($ TYP. all points ON)	$0.17 \mathrm{~A}($ TYP. all points ON)	-	
External dimensions	$130(\mathrm{H}) \times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	$106(\mathrm{H}) \times 27.8(\mathrm{~W}) \times 110(\mathrm{D}) \mathrm{mm}$	-	
Weight	0.25 kg	0.12 kg	-	

*1 The counting speed is affected by the rise/fall time of pulses. A count can be performed with the following counting speed.
A1SD62D-S1

Counting speed switch setting	200K	10K		
Rise/fall time	1-phase input	2-phase input	1-phase input	2-phase input
$t=1.25 \mu \mathrm{~s}$ or less	200kpps	200kpps	10kpps	7kpps
$t=12.5 \mu \mathrm{~s}$ or less	20kpps	20kpps	1kpps	700pps
$t=250 \mu \mathrm{~s}$	-	-	500 pps	250pps

RD62D2

Counting speed switch setting	8Mpps 4Mpps 2Mpps	1Mpps	500kpps	200kpps	100kpps	10kpps
Rise/fall time	Common to 1-phase input and 2-phase input					
$t=0.125 \mu$ or less	2Mpps	1Mpps	500kpps	200kpps	100kpps	10kpps
$t=0.25 \mu$ or less	1Mpps	1Mpps	500kpps	200kpps	100kpps	10kpps
$t=0.5 \mu$ or less	-	500kpps	500kpps	200kpps	100kpps	10kpps
$t=1.25 \mu$ or less	-	-	200kpps	200kpps	100kpps	10kpps
$t=2.5 \mu \mathrm{~s}$ or less	-	-	-	100kpps	100kpps	10kpps
$t=25 \mu \mathrm{~s}$ or less	-	-	-	-	10kpps	10kpps
$t=500 \mu$ or less	-	-	-	-	-	500pps

*2 The following tables show the minimum count pulse width.
A1SD62D-S1

Counting speed switch setting	Waveform (duty ratio: 50\%)
(When 200KPPS is set)	(Minimum phase differential for 2-phase input: $1.25 \mu \mathrm{~s}$)
(When 10KPPS is set) 1-phase input	(1-phase input)

Counting speed switch setting
(When 10KPPS is set) 2-phase input

RD62D2

Pulse input mode	Waveform (in up count, duty ratio: 50\%)	Minimum count pulse cycle, T, and phase difference, $t(\mu s)$, at each counting speed							
		8Mpps	4Mpps	2Mpps	1Mpps	500kpps	200kpps	100kpps	10kpps
1-phase multiple of 1	ФB and CH1 Down count command \qquad (Y3)	-	-	$\mathrm{T}=0.5$	$\mathrm{T}=1$	T = 2	$\mathrm{T}=5$	$\mathrm{T}=10$	T = 100
1-phase multiple of 2	ΦB and CH1 Down count command \qquad (Y3)	-	$\mathrm{T}=0.5$	$\mathrm{T}=1$	$\mathrm{T}=2$	$\mathrm{T}=4$	$\mathrm{T}=10$	$\mathrm{T}=20$	$\mathrm{T}=200$
CW/CCW		-	-	$\mathrm{T}=0.5$	$\mathrm{T}=1$	$\mathrm{T}=2$	$\mathrm{T}=5$	$\mathrm{T}=10$	$\mathrm{T}=100$
2-phase multiple of 1		-	-	$\begin{aligned} & T=0.5 \\ & t=0.125 \end{aligned}$	$\begin{aligned} & T=1 \\ & t=0.25 \end{aligned}$	$\begin{aligned} & T=2 \\ & t=0.5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=5 \\ & \mathrm{t}=1.25 \end{aligned}$	$\begin{aligned} & \mathrm{T}=10 \\ & \mathrm{t}=2.5 \end{aligned}$	$\begin{aligned} & T=100 \\ & t=25 \end{aligned}$
2-phase multiple of 2		-	$\begin{aligned} & T=0.5 \\ & t=0.125 \end{aligned}$	$\begin{aligned} & \mathrm{T}=1 \\ & \mathrm{t}=0.25 \end{aligned}$	$\begin{aligned} & T=2 \\ & t=0.5 \end{aligned}$	$\begin{aligned} & T=4 \\ & t=1 \end{aligned}$	$\begin{aligned} & \mathrm{T}=10 \\ & \mathrm{t}=2.5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=20 \\ & \mathrm{t}=5 \end{aligned}$	$\begin{aligned} & T=200 \\ & t=50 \end{aligned}$
2-phase multiple of 4		$\begin{aligned} & T=0.5 \\ & t=0.125 \end{aligned}$	$\begin{aligned} & T=1 \\ & t=0.25 \end{aligned}$	$\begin{aligned} & T=2 \\ & t=0.5 \end{aligned}$	$\begin{aligned} & T=4 \\ & t=1 \end{aligned}$	$\begin{aligned} & T=8 \\ & t=2 \end{aligned}$	$\begin{aligned} & T=20 \\ & t=5 \end{aligned}$	$\begin{aligned} & \mathrm{T}=40 \\ & \mathrm{t}=10 \end{aligned}$	$\begin{aligned} & T=400 \\ & t=100 \end{aligned}$

8.3 Function Comparison Tables

Positioning modules and pulse I/O modules

A1SD75P1-S3/A1SD75P2-S3/A1SD75P3-S3 and RD75P2/RD75P4/RD75D2/RD75D4

-Main functions
\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Precautions
		$\begin{aligned} & \text { A1SD75P1-S3 } \\ & \text { A1SD75P2-S3 } \\ & \text { A1SD75P3-S3 } \end{aligned}$	RD75P2 RD75P4 RD75D2 RD75D4	
OPR control	- Machine OPR control Mechanically establishes the positioning start point using a nearpoint dog or stopper. (Positioning start No.9001) - Fast OPR control Positions a target to the OP address (Md.43) stored in the module using machine OPR. (Positioning start No.9002)	\bigcirc	\bigcirc	
Position control	- Linear control (1-axis linear control, 2-axis linear interpolation control) Positions a target using a linear path to the address set in the positioning data or to the position specified with the movement amount. - Fixed-feed control (1-axis fixed-feed control, 2-axis fixed-feed control) Positions a target by the movement amount using the amount set in the positioning data. (With the fixed-feed control, [Md.29] Current feed value is set to 0 when the control is started. In the 2 -axis fixedfeed control, the fixed-feed is performed along a linear path obtained by interpolation.) - 2-axis circular interpolation control Positions a target using an arc path to the address set in the positioning data, or to the position specified with the movement amount, sub point, or center point.	\bigcirc	\bigcirc	
Speed control	Continuously outputs the pulses corresponding to the command speed set in the positioning data.	\bigcirc	\bigcirc	
Speed-position switching control	Performs the speed control, and position control (positioning with the specified movement amount) immediately after that by turning on Speed-position switching signal.	\bigcirc	\bigcirc	
Current value changing	Changes [Md.29] Current feed value to the address set in the positioning data. The following two methods can be used. (Machine feed value cannot be changed.) - Current value changing using positioning data - Current value changing using the current value changing start No. (No.9003)	\bigcirc	\bigcirc	
JUMP instruction	Unconditionally or conditionally jumps to the specified positioning data No.	\bigcirc	\bigcirc	
Block start (normal start)	With one start, executes the positioning data in a random block with the set order.	\bigcirc	\bigcirc	
Condition start	Judges the condition set in Condition data for the specified positioning data, and executes Block start data. When the condition is established, Block start data is executed. When not established, that block start data is ignored, and the next point's block start data is executed.	\bigcirc	\bigcirc	
Wait start	Judges the condition set in Condition data for the specified positioning data, and executes Block start data. When the condition is established, Block start data is executed. When not established, the control stops (waits) until the condition is established.	\bigcirc	\bigcirc	

Function		MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Precautions
		A1SD75P1-S3 A1SD75P2-S3 A1SD75P3-S3	RD75P2 RD75P4 RD75D2 RD75D4	
Simultaneous start	Simultaneously executes the positioning data having the number for the axis specified with Condition data (Outputs pulses at the same timing).	\bigcirc	\bigcirc	
Stop	Stops positioning operation.	\bigcirc	\bigcirc	
Repeated start (FOR loop)	Repeats the program from the block start data set with FOR loop to the block start data set in NEXT for the specified number of times.	\bigcirc	\bigcirc	
Repeated start (FOR condition)	Repeats the program from the block start data set with FOR condition to the block start data set in NEXT until the conditions set in Condition data are established.	\bigcirc	\bigcirc	
JOG operation	Outputs pulses to the drive unit while JOG start signal is on.	\bigcirc	\bigcirc	
Manual pulse generator operation	Outputs pulses commanded with the manual pulse generator to the drive unit. (Performs the fine adjustment and others at the pulse level.)	\bigcirc	\bigcirc	

Sub functions

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Precautions
		$\begin{aligned} & \text { A1SD75P1-S3 } \\ & \text { A1SD75P2-S3 } \\ & \text { A1SD75P3-S3 } \end{aligned}$	RD75P2 RD75P4 RD75D2 RD75D4	
OPR retry function	Retries the machine OPR with the upper/lower limit switches during the machine OPR. This allows the machine OPR to be performed even if the axis is not returned to a position before the near-point dog with operations such as the JOG operation.	\bigcirc	\bigcirc	
OP shift function	After the machine OPR, this function compensates the position by the specified distance from the machine OP position and sets that position as the OP address.	\bigcirc	\bigcirc	
Backlash compensation function	Compensates the backlash amount of the machine system. Feed pulses equivalent to the set backlash amount are output each time the movement direction changes.	\bigcirc	\bigcirc	
Electronic gear function	By setting the movement amount per pulse, this function can freely change the machine movement amount per commanded pulse. A flexible positioning system that matches the machine system can be structured by setting the movement amount per pulse.	\bigcirc	\bigcirc	
Near pass mode function	Suppresses the machine vibration when the speed is changed during continuous path control in the interpolation control.	\bigcirc	\bigcirc	
Speed limit function	If the command speed exceeds [Pr.7] Speed limit value during the control, this function limits the command speed to within the setting range of [Pr.7] Speed limit value.	\bigcirc	\bigcirc	
Torque limit function	If the torque generated in the servo motor exceeds [Pr.18] Torque limit setting value during the control, this function limits the generated torque to within the setting range of [Pr.18] Torque limit setting value.	\bigcirc	\bigcirc	
Software stroke limit function	If a command outside of the upper/lower limit stroke limit setting range, set in the parameters, is issued, this function will not execute the positioning for that command.	\bigcirc	\bigcirc	
Hardware stroke limit function	Performs the deceleration stop with the limit switch connected to the connector for external devices.	\bigcirc	\bigcirc	
Speed change function	Changes the speed during positioning. Set the new speed in [Cd.16] New speed value, the speed change buffer memory area, and change the speed with [Cd.17] Speed change request.	\bigcirc	\bigcirc	
Override function	Changes the speed during positioning within a percentage of 1 to 300\%. Execute this function using [Cd.18] Positioning operation speed override.	\bigcirc	\bigcirc	

Function		MELSEC－AnS／ QnAS series	MELSEC iQ－R series	Precautions
		A1SD75P1－S3 A1SD75P2－S3 A1SD75P3－S3	RD75P2 RD75P4 RD75D2 RD75D4	
Acceleration／ deceleration time change function	Changes the acceleration／deceleration time at the speed change．	\bigcirc	\bigcirc	
Torque change function	Changes the torque limit value during the control．	\bigcirc	\bigcirc	
Step function	Temporarily stops the operation to check the positioning operation during debugging and other operation．The operation can be stopped for each Automatic deceleration or Positioning data．	\bigcirc	\bigcirc	
Skip function	Pauses（decelerates to stop）the positioning being executed when Skip signal is input，and performs the next positioning．	\bigcirc	\bigcirc	
M code output function	Issues a command for a subsidiary work（such as stopping clamps or drills and changing tools）corresponding to each code number（0 to 32767）that can be set to each positioning data．	\bigcirc	\bigcirc	
Teaching function	Stores the address positioned with the manual control into the positioning address of the specified positioning data No．（［Cd．5］）．	\bigcirc	\bigcirc	
Command in－ position function	At each automatic deceleration，this function calculates the remaining distance for the module to reach the positioning stop position，and sets Command in－position flag to 1 when the value is less than or equal to the set value．When performing another subsidiary work before the control ends，use this function as a trigger for the subsidiary work．	\bigcirc	\bigcirc	
Stepping motor mode function	Sets data required to use a stepping motor．	\bigcirc	\times	The stepping motor mode function is not available．
Acceleration／ deceleration process function	Adjusts acceleration／deceleration of the control．	\bigcirc	\bigcirc	
Indirect designation function	Specifies positioning data No．indirectly and starts positioning operation．	\bigcirc	\times	The indirect designation function is not available．

Common functions

O：Compatible／function available，\triangle ：Partly changed，\times ：Incompatible／function not available，一：Not applicable

Function		MELSEC－AnS／ QnAS series	MELSEC iQ－R series	Precautions
		A1SD75P1－S3 A1SD75P2－S3 A1SD75P3－S3	RD75P2 RD75P4 RD75D2 RD75D4	
Parameter initialization function	Resets the setting data stored in the flash ROM of the module to the factory default values．The following two methods can be used． （1）Method using a sequence program （2）Method using software package	\bigcirc	\triangle	For the RD75Pロ／Dロ， use the module data initialization function instead． Only the method using a sequence program is supported．
Execution data backup function	Stores the setting data currently being executed into the flash ROM． The following two methods can be used． （1）Method using a sequence program （2）Method using software package	\bigcirc	\triangle	For the RD75Pロ／Dロ， use the module data backup function instead． Only the method using a sequence program is supported．
LED indication function	Indicates the module operating status，signal status，or error status with a 17 －segment LED on the front of the module．What status the LED indicates is switched using the mode switch on the front of the module．	\bigcirc	\times	The LED indication function is not available．
Clock data function	Sets the clock data of the programmable controller CPU to the module．The set clock data are used for history data．	\bigcirc	\bigcirc	

High-speed counter modules

A1SD61/A1SD62/A1SD62E/A1SD62D/A1SD62D-S1 and RD62P2/RD62P2E/RD62D2

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Precautions
		A1SD61 A1SD62 RD62P2 RD62P2E RD62D2*1		

*1 The counter operation mode for the RD62P2/RD62P2E/RD62D2 is pulse count mode.

8.4 Precautions for Replacement

Wiring

For positioning modules, the external wiring connectors to be used differ between the MELSEC-AnS/QnAS series and the MELSEC iQ-R series. And wire sizes applicable to the connectors differ accordingly.
For high-speed counter modules, MELSEC-AnS/QnAS series uses a terminal block while MELSEC iQ-R series uses a connector.

When using a MELSEC iQ-R series high-speed counter module, use connectors for wiring instead of terminal blocks, or use an upgrade tool conversion adapter.

External interface specifications

The external interface specifications differ between the MELSEC-AnS/QnAS series and the MELSEC iQ-R series. Check that connections to external devices meet the specifications.

Dedicated instruction

The dedicated instructions differ between the MELSEC-AnS/QnAS series and the MELSEC iQ-R series.
If a dedicated instruction is used in a MELSEC-AnS/QnAS series program, the program needs to be corrected for MELSEC iQ-R series.

I/O signals and buffer memory areas

The assignments of I/O signals and buffer memory areas differ between the MELSEC-AnS/QnAS series and the MELSEC iQR series.
When the I/O signals and buffer memory areas are used in the MELSEC-AnS/QnAS series program, the program needs to be corrected for the MELSEC iQ-R series.

Point ${ }^{8}$	For details on these precautions, refer to the following.
	LDMELSEC iQ-R Module Configuration Manual
	LDMELSEC iQ-R Positioning Module User's Manual (Startup)
	L]MELSEC iQ-R Positioning Module User's Manual (Application)
	[]MELSEC iQ-R High-Speed Counter Module User's Manual (Startup)
	[]MELSEC iQ-R High-Speed Counter Module User's Manual (Application)
	[]A1SD75P1-S3/P2-S3/P3-S3, AD75P1-S3/P2-S3/P3-S3 Positioning Module User's Manual
	$\square \square H$ High Speed Counter Module Type AD61-S1 User's Manual

9．1 Alternative Model List

This section lists alternative models of the MELSEC iQ－R series control network modules in accordance with the specifications and functions of the MELSEC－AnS／QnAS series control network modules．
Select models that best suit your application considering the scope of control of MELSEC－AnS／QnAS series control network modules currently used，as well as the system specifications and extensibility after replacement．

Item	MELSEC－AnS／ QnAS series	MELSEC IQ－R series	Specification difference
CC－Link	A1SJ61BT11 A1SJ61QBT11	RJ61BT11	（1）External wiring：Changed （2）Number of slots：Not changed （3）Programs：I／O signals are changed，and buffer memory addresses are changed． （4）Specifications：Connection cables are changed（for Ver．1．10－compatible CC－Link dedicated cable） （5）Functions：Changed
MELSECNET（II）	A1SJ71AP21 A1SJ71AP21－S3 A1SJ71AR21	None	Connect the RQ extension base unit（R6ロB）and consider replacing the existing system with a system on MELSECNET／H．
MELSECNET／B	AJ71AT21B AJ72T25B	None	Connect the RQ extension base unit（R6ロB）and consider replacing the existing system with a system on MELSECNET／H．
MELSECNET／10	A1SJ71LR21 A1SJ71BR11 A1SJ71QLP21S A1SJ71QLR21 A1SJ71QBR11 A1SJ72QLP25 A1SJ72QLR25 A1SJ72QBR15	None	Connect the RQ extension base unit（ $\mathrm{R} 6 \square \mathrm{~B}$ ）and consider replacing the existing system with a system on MELSECNET／H．
MELSECNET／10	A1SJ71LP21A1S J71QLP21	RJ71LP21－25	（1）External wiring：Not changed （2）Number of slots：Not changed \＃TBD\＃ （4）Specifications：Not changed （5）Functions：Changed（No remote I／O network and simple redundancy）
MELSECNET／MINI－S3	A1SJ71PT32－S3 A1SJ71T32－S3	None	Consider replacing the existing system with a system on CC－Link．
MELSECNET－I／OLINK	A1SJ51T64	None	Connect the RQ extension base unit（R6ロB）and consider replacing the existing system with AnyWire DB A20．
JEMANET（OPCN－1）	A1SJ71J92－S3 A1SJ72J95	None	Consider replacing the existing system with a system on other networks．
ME－NET	A1SJ71ME81	None	Consider replacing the existing system with a system on other networks．
B／NET	A1SJ71B62－S3	None	Consider replacing the existing system with a system on other networks．
AS－i	A1SJ71AS92	None	Consider replacing the existing system with a system on other networks．

9.2 Specification Comparison Tables

CC-Link system master/local modules

A1SJ61BT11/A1SJ61QBT11 and RJ61BT11

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item	Specifications		Compatibility	Precautions
	A1SJ61BT11/A1SJ61QBT11	RJ61BT11		
Transmission speed	Selected from 156kbps, 625 kbps , 2.5 Mbps , 5 Mbps , and 10 Mbps .		\bigcirc	
Maximum number of connected modules (master station)	64		\bigcirc	
Number of occupied stations (local station)	1 to 4 stations		\bigcirc	
Maximum number of link points per system	Remote I/O (RX, RY): 2048 points Remote register (RWw): 256 points Remote register (RWr): 256 points		\bigcirc	
Link points per station	Remote I/O (RX, RY): 32 points (30 points for a local station) Remote register (RWw): 4 points Remote register (RWr): 4 points		\bigcirc	
Communication method	Broadcast polling method		\bigcirc	
Synchronization method	Frame synchronization method		\bigcirc	
Encoding method	NRZI method		\bigcirc	
Transmission method	Bus (RS-485)		\bigcirc	
Transmission format	HDLC standards		\bigcirc	
Error control system	CRC ($\left.\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+1\right)$		\bigcirc	
Connection cable	- Ver.1.10-compatible CC-Link dedicated cable - CC-Link dedicated cable (Ver.1.00-compatible) - CC-Link dedicated highperformance cable (Ver.1.00compatible)	- Ver.1.10-compatible CC-Link dedicated cable	\triangle	Only Ver.1.10-compatible CCLink dedicated cable can be used.
Maximum overall cable distance (maximum transmission distance)	Depends on the transmission speed. For details, refer to the relevant manuals.		\bigcirc	
RAS function	Standby master function, automatic return function, local station cut-off function, error detection by the link special relay (SB)/register (SW)		\bigcirc	
Number of parameter registrations to E^{2} PROM	10,000 times	-	\triangle	Set parameters using by GX Works3.
External interface	10-point terminal block (M3 screws)	7-point terminal block (M3)	\times	Wiring needs to be changed
Applicable wire size	0.3 to $1.25 \mathrm{~mm}^{2}$		\bigcirc	after replacement.
Applicable solderless terminal	R1.25-3 (solderless terminal with an insulation sleeve cannot be used.)		\bigcirc	
Number of occupied I/O points	32 points (I/O assignment: special 32 points)	32 points (I/O assignment: Intelligent 32 points)	\bigcirc	
Internal current consumption (5VDC)	0.4 A	0.34A	-	
External dimensions	130(H) $\times 34.5(\mathrm{~W}) \times 117.5(\mathrm{D}) \mathrm{mm}$	106(H) $\times 27.8$ (W) $\times 131$ (D) mm	-	
Weight	0.25 kg	0.16 kg	-	

MELSECNET/10 network modules

A1SJ71LP21/A1SJ71QLP21 and RJ71LP21-25

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions	
		A1SJ71LP21/A1SJ71QLP21	RJ71LP21-25 (MELSECNET/10 mode)			
Maximum number of link points per network	LB	8192		\bigcirc		
	LW					
	LX	8192			\bigcirc	
	LY					
Maximum number of link points per station	LB	$\{(\mathrm{LY}+\mathrm{LB}) \div 8+(2 \times \mathrm{LW})\} \leq 2000$ bytes		\bigcirc		
	LW					
	LX					
	LY					
Communication speed		10Mbps			\bigcirc	
Number of connected stations per network		64 (control station: 1, normal station: 63)			\bigcirc	
Connection cable		Optical fiber cable (Obtained by user)			\bigcirc	
Overall distance		30km		\bigcirc		
Station-to-station distance		SI optical cable: 500 m H-PCF optical cable: 1 km Broad-band H-PCF optical cable: 1 km QSI optical cable: 1 km		\bigcirc		
Maximum number of networks		A1SJ71LP21: 255 (The sum total of PLC to PLC network and remote I/O network) A1SJ71QLP21: 239 (The sum total of PLC to PLC network and remote I/O network)	239 (The sum total of PLC to PLC network and remote I/O network)	\triangle	Network numbers 240 to 250 cannot be set after replacement. Set other unused network numbers instead.	
Maximum number of groups		9		\bigcirc		
Transmission route format		Duplex loop		\bigcirc		
Communication method		Token ring		\bigcirc		
Error control system		Retry by CRC ($\left.\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+1\right)$ and overtime		\bigcirc		
RAS function		- Loop back function due to abnormality detection and cable disconnection - Diagnostic function for local link circuit check - Prevention of system down due to shifting to control station - Abnormality detection by link special relay and link special resistor		\bigcirc		
Transient transmission		- N:N communication (Monitor, program upload/download, etc.) - Link dedicated instructions (ZNRD, ZNWR)	- N:N communication (Monitor, program upload/download, etc.) - Send/receive instructions to/from a sequence program (ZNRD/ ZNWR, SEND/RECV, RECVS, READ/WRITE, SREAD/SWRITE, REQ, RRUN/RSTOP, RTMRD/ RTMWR) - Function for sending message to channel numbers 1 to 8	\bigcirc		
Number of occupied I/O points		32 (I/O assignment: special 32 points)	32 (I/O assignment: Intelligent 32 points)	\bigcirc		
5VDC internal current consumption		A1SJ71LP21: 0.65A A1SJ71QLP21: 0.40A	0.48A	-		
Weight		A1SJ71LP21: 0.18 kg	0.15 kg	-		

9.3 Function Comparison Tables

CC-Link system master/local modules

A1SJ61BT11/A1SJ61QBT11 and RJ61BT11

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-AnS/QnAS series		MELSEC iQ-R series RJ61BT11	Precautions
		A1SJ61BT11	A1SJ61QBT11		
Communication between master station and remote I/O station	Communicates ON/OFF information with a remote I/O station.	\bigcirc	\bigcirc	\bigcirc	
Communication between master and remote device stations	Communicates ON/OFF information and numerical data with a remote device station.	\bigcirc	\bigcirc	\bigcirc	
Communication between master station and local station	Communicates ON/OFF information and numerical data with a local station.	\bigcirc	\bigcirc	\bigcirc	
Communication between master and intelligent device stations	Communicates with intelligent device station using cyclic transmission and transient transmission.	\bigcirc	\bigcirc	\bigcirc	
Reserved station function	By setting a remote station and local station, which are to be connected in the future, as reserved stations, these stations are not treated as data link faulty stations. If a connected module is specified, no data link is available.	\bigcirc	\bigcirc	\bigcirc	
Error invalid station setting function	Prevents the remote stations and local stations that cannot perform data link due to reasons such as power-off from detecting as data link faulty stations.	\bigcirc	\bigcirc	\bigcirc	
Data link status setting at master station programmable controller CPU error	Sets the data link status when an operation continuation error occurs programmable controller CPU of the master station.	\bigcirc	\bigcirc	\bigcirc	
Parameter registration to E^{2} PROM	Parameter writing is not required at each startup of master module by registering parameters to E^{2} PROM of master module.	\bigcirc	\bigcirc	\triangle	Set parameters using by GX Works3.
Data link faulty station input data status setting	Sets the input (received) data status (cleared/held) from the station that has data link error caused by reasons such as power-off.	\bigcirc	\bigcirc	\bigcirc	
Module reset function by sequence program	Resets the module by the sequence program without resetting programmable controller CPU when the switch setting is changed or an error has occurred in a module.	\bigcirc	\bigcirc	\times	The module reset function by sequence program cannot be used.
Data link stop/ restart	Stops and restarts a data link during the data link execution.	\bigcirc	\bigcirc	\bigcirc	

Function		MELSEC-AnS/QnAS series		MELSEC iQ-R	Precautions
		A1SJ61BT11	A1SJ61QBT11	RJ61BT11	
Automatic return function	When a module that has been disconnected from data link due to reasons such as power-off returns to the normal status, data link is automatically restarted.	\bigcirc	\bigcirc	\bigcirc	
Local station detach function	Data link can be continued in a normal module by disconnecting a module that cannot perform data link due to reasons such as power-off.	\bigcirc	\bigcirc	\bigcirc	
Data link status check (SB/SW)	Data link status can be checked. Checking the status such as the interlock of sequence program can be used.	\bigcirc	\bigcirc	\bigcirc	
Offline test	Hardware test: Module operation check Line test: Module connection status check Parameter check test: Parameter setting check	\bigcirc	\bigcirc	\triangle	The parameter check test cannot be used.
Scan synchronous function	Synchronous mode: Data link with scan synchronized with sequence program is available. Asynchronous mode: Data link not synchronized with sequence program is available.	\bigcirc	\bigcirc	\bigcirc	
Standby master function	Data link can be continued by switching to the standby master station when an error occurs in the master station.	\bigcirc	\bigcirc	\bigcirc	
Dedicated instruction (RIRD, RIWT, RIRCV, RISEND, RIFR, RITO)	Enables transient transmission to an intelligent device station and a local station using dedicated instructions.	\bigcirc	\bigcirc	\triangle	The instruction formats are different.
Send/receive instruction (SEND, RECV, READ, SREAD, WRITE, SWRITE, REQ)	Enables data sending/receiving to/ from other stations on CC-Link. Reading/writing data from/to other stations is also available.	\times	\bigcirc	\bigcirc	
Remote I/O net mode	Enables communications between the master station and a remote I/O station only.	\bigcirc	\bigcirc	\triangle	Set parameters using by GX Works3.
Temporary error invalid station specify function	Enables module replacement without detecting an error of the faulty remote station during online.	\bigcirc	\bigcirc	\bigcirc	
Online test function	Enables line test, link start/stop, and other operations by GX Developer.	\times	\bigcirc	\bigcirc	
Monitoring and diagnostics	Enables monitoring and diagnosing by GX Developer.	\times	\bigcirc	\bigcirc	

MELSECNET/10 network modules

A1SJ71LP21 and RJ71LP21-25

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-AnS series	MELSEC iQ-R series	Precautions
		A1SJ71LP21	RJ71LP21-25 (MELSECNET/ 10 mode)	
Cyclic transmission				
Communications with B/W (1:N communication)	Allows data transmission to all the stations using the link relay and the link register. (Communications using B/W)	\bigcirc	\bigcirc	
Communications with X/Y (1:1 communication)	Allows data communications between the I/O master station and one of the other stations (one-to-one communications). (Communications using X/Y)	\bigcirc	\bigcirc	
Constant link scan function	Maintains the link scan time at a constant value.	\bigcirc	\bigcirc	
Data link/stop/restart function	Stops the cyclic transmission temporarily from the engineering tool.	\bigcirc	\bigcirc	
Data link transfer function	Transfers the link data to another network at a time using parameters when more than one network module is connected to one programmable controller.	\bigcirc	\bigcirc	
-Transient transmission				
Transient transmission function	Allows communications between specific stations only when a communication request is made. (Communications using link dedicated instructions or the engineering tool)	\bigcirc	\bigcirc	The LRDP and LWTP instructions cannot be used after replacement. Use the ZNRD, ZNWR, READ, or WRITE instruction instead.
Routing function	Performs the transient transmission to a station in another network number.	\bigcirc	\bigcirc	
Group function	Performs the transient transmission to all the stations in a group with a single execution of an instruction.	\bigcirc	\bigcirc	
-RAS function				
Automatic on-line return function	Automatically returns a disconnected station to the network and restarts the data link when the station has recovered from an error.	\bigcirc	\bigcirc	
Loopback function	Disconnects the erroneous or faulty station when an error or a fault such as a cable disconnection occurs and maintains the data link with the available stations.	\bigcirc	\bigcirc	
Station separation function	Maintains the data link between the available stations even when some stations are down or powered off.	\bigcirc	\bigcirc	
Diagnosis function	Checks the network line status and module settings.	\bigcirc	\bigcirc	In the RJ71LP21-25, use the "Network Diagnostics" function of the engineering tool.
Data link condition detection function	Detects faulty areas using the data in the link special relay and link special register.	\bigcirc	\bigcirc	In the RJ71LP21-25, use the "Network Diagnostics" function of the engineering tool.
Control station shift function	Maintains the data link with another normal station that serves as a sub-control station even if the control station goes down.	\bigcirc	\bigcirc	
■Others				
Multiplex transmission function	Allows a high-speed transmission using a duplex transmission path (toward and reverse loops).	\bigcirc	\triangle	The RJ71LP21-25 cannot operate as a master station that executes the multiplex transmission function.
Reserve station function	Reserves unconnected stations for future use. By using this function, those stations are not detected as faulty stations and no communication error occurs.	\bigcirc	\bigcirc	

Function		MELSEC-AnS series	MELSEC iQ-R series	Precautions
		A1SJ71LP21	RJ71LP21-25 (MELSECNET/ 10 mode)	
Station specific parameters	Used to rearrange the transmission range of each station (LB and LW) for a specific station. Setting these parameters eliminates the need for changing programs even when the link device range has been extended during the operation. This also avoids unnecessary transmission ranges.	\bigcirc	\times	Reassign the station specific parameters to the refresh parameters. ${ }^{* 1}$

*1 For details, refer to the following.
L]MELSEC iQ-R MELSECNET/H Network Module User's Manual (Application)

A1SJ71QLP21 and RJ71LP21-25

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-QnAS series	MELSEC iQ-R series	Precautions
		A1SJ71QLP21	RJ71LP21-25 (MELSECNET/ 10 mode)	
-Cyclic transmission				
Communication with B / W	Allows data transmission to all the stations using the link relay and the link register. (Communications using B/W)	\bigcirc	\bigcirc	
Communication with X/Y	Allows data communications between the I/O master station and one of the other stations (one-to-one communications). (Communications using X/Y)	\bigcirc	\bigcirc	
Stopping/restarting cyclic transmission	Stops the cyclic transmission temporarily from the engineering tool.	\bigcirc	\bigcirc	
Inter data link transfer function	Transfers the link data to another network at a time using parameters when more than one network module is connected to one programmable controller.	\bigcirc	\bigcirc	
Direct access to the link device	Reads/writes link devices of the network module from/to a sequence program.	\bigcirc	\bigcirc	
Increasing the send points by installing multiple modules of the same network No.	Increases the number of send points per station up to 8000 bytes by connecting multiple network modules of the same network number to one programmable controller.	\bigcirc	\bigcirc	
Default values of network refresh parameters	Eliminates the need for setting parameters by using the default values of refresh parameters.	\bigcirc	\times	
-Transient transmission				
Transient transmission function	Allows communications between specific stations only when a communication request is made. (Communications using link dedicated instructions or the engineering tool)	\bigcirc	\bigcirc	
Routing function	Performs the transient transmission to a station in another network number.	\bigcirc	\bigcirc	
Group function	Performs the transient transmission to all the stations in a group with a single execution of an instruction.	\bigcirc	\bigcirc	
Link dedicated instructions	Allows communications with other stations at desired timing.	\bigcirc	\bigcirc	
Specifying default network	Processes the requests that cannot specify the destination network number.	\bigcirc	\times	
Clock setting at stations in the network from peripheral devices	Configures the clock setting to the CPU modules on the network from the engineering tool.	\bigcirc	\bigcirc	
-RAS function				
Automatic recovery function	Automatically returns a disconnected station to the network and restarts the data link when the station has recovered from an error.	\bigcirc	\bigcirc	
Loop back function	Disconnects the erroneous or faulty station when an error or a fault such as a cable disconnection occurs and maintains the data link with the available stations.	\bigcirc	\bigcirc	
Station detachment function	Maintains the data link between the available stations even when some stations are down or powered off.	\bigcirc	\bigcirc	
Transient transmission is possible when the programmable controller CPU is in fault	Allows users to check error details from the engineering tool via network when a stop error has occurred in a CPU module.	\bigcirc	\bigcirc	In the RJ71LP21-25, use the "Network Diagnostics" function of the engineering tool.
Confirming the transient transmission error detection time	Checks the time when the transient transmission was completed with an error, and the network number and the station number in which the error was detected.	\bigcirc	\bigcirc	In the RJ71LP21-25, use the "Network Diagnostics" function of the engineering tool.

Function		MELSEC-QnAS series	MELSEC iQ-R series	Precautions
		A1SJ71QLP21	RJ71LP21-25 (MELSECNET/ 10 mode)	
Diagnostic function	Checks the network line status and module settings.	\bigcirc	\bigcirc	In the RJ71LP21-25, use the "Network Diagnostics" function of the engineering tool.
Control station transfer function	Maintains the data link with another normal station that serves as a sub-control station even if the control station goes down.	\bigcirc	\bigcirc	
mothers				
Multiplex transmission function	Allows a high-speed transmission using a duplex transmission path (toward and reverse loops).	\bigcirc	\triangle	The RJ71LP21-25 cannot operate as a master station that executes the multiplex transmission function.
Reserve station function	Reserves unconnected stations for future use. By using this function, those stations are not detected as faulty stations and no communication error occurs.	\bigcirc	\bigcirc	
Simplified network duplexing	Maintains the data link by switching the link data refresh target to the standby network if an error such as cable disconnection has occurred in the normal network.	\bigcirc	\times	The simplified duplex system is not available to the RJ71LP21-25. Configure a single-network system.
SB/SW can be used as you like (user flags)	Sends the desired control information to all the stations using the user flags (SW01F0 to SW01F3) instead of the link device.	\bigcirc	\times	Change a program using the UFSET, UFRST, UFOUT instructions to a sequence program using the link relay and link register after replacement.
Station specific parameters	Used to rearrange the transmission range of each station (LB and LW) for a specific station. Setting these parameters eliminates the need for changing programs even when the link device range has been extended during the operation. This also avoids unnecessary transmission ranges.	\bigcirc	\times	Reassign the station specific parameters to the refresh parameters. ${ }^{* 1}$

[^9]
9.4 Precautions for Replacement

CC-Link system master/local modules

Dedicated instructions

The dedicated instructions differ between the MELSEC-AnS/QnAS series and the MELSEC iQ-R series.
When dedicated instructions are used in the MELSEC-AnS/QnAS series program, the program needs to be corrected for MELSEC iQ-R series.

I/O signals and buffer memory areas

The assignments of I/O signals and buffer memory areas differ between the MELSEC-AnS/QnAS series and the MELSEC iQR series.

When the I/O signals and buffer memory areas are used in the MELSEC-AnS/QnAS series program, the program needs to be corrected for the MELSEC iQ-R series.

Link special relay (SB) and link special register (SW)

The link special relay (SB)/link special register (SW) number assignments differ between the MELSEC-Q series and MELSEC iQ-R series modules. When the SB/SW is used in the MELSEC-AnS/QnAS series program, the program needs to be corrected for the MELSEC iQ-R series.

Peripheral connection module

If the AJ65BT-G4/AJ65BT-G4-S3 peripheral connection module is used, replace it with the AJ65BT-R2N CC-Link system RS232C interface module (MELSOFT connection setting).

Processing time

The time such as sequence scan time or link refresh time differs between the MELSEC-AnS/QnAS series and the MELSEC iQ-R series.
For details on the processing time, refer to the manual for the module used.

Parameter registration to E^{2} PROM

The MELSEC iQ-R series CC-Link system master/local module does not support the use of E^{2} PROMs. Delete the sequence program corresponding to the parameter registration to $\mathrm{E}^{2} \mathrm{PROM}$.

MELSECNET/10 network modules

Dedicated instructions

The dedicated instructions differ between the MELSEC-AnS/QnAS series and the MELSEC iQ-R series.
When dedicated instructions are used in the MELSEC-AnS/QnAS series program, the program needs to be corrected for MELSEC iQ-R series.

Processing time

The time such as sequence scan time or link refresh time differs between the MELSEC-AnS/QnAS series and the MELSEC
iQ-R series.
For details on the processing time, refer to the manual for the module used.

Module parameters for normal stations

In the MELSEC iQ-R series, normal stations require network parameters.
Set them after replacement.

Simplified duplex system

The MELSECNET/H simplified duplex system cannot be used in the MELSEC iQ-R series. Configure a single-network system after replacement.

Remote I/O network

Remote I/O network is not available to the MELSEC iQ-R series. Consider replacing the existing system with a system on CCLink IE Field Network.

Point P
For details on these precautions, refer to the following
LDMELSEC iQ-R Module Configuration Manual
LIMMELSEC iQ-R CC-Link System Master/Local Module User's Manual (Startup)
LDMELSEC iQ-R CC-Link System Master/Local Module User's Manual (Application)
[]MMELSEC iQ-R MELSECNET/H Network Module User's Manual (Startup)
LDMELSEC iQ-R MELSECNET/H Network Module User's Manual (Application)

10 INFORMATION MODULE REPLACEMENT

10.1 Alternative Model List

This section lists alternative models of the MELSEC iQ-R series information modules in accordance with the specifications and functions of the MELSEC-AnS/QnAS series information modules.
Select models that best suit your application considering the scope of control of MELSEC-AnS/QnAS series information modules currently used, as well as the system specifications and extensibility after replacement.

Item	MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Specification difference
Serial communication	A1SJ71QC24N1	RJ71C24	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: I/O signals are changed, and buffer memory addresses are changed. (4) Specifications: Transmission speed is changed. (5) Functions: Changed (No printer function)
	A1SJ71UC24-R2 A1SJ71QC24N1-R2	RJ71C24-R2	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: I/O signals are changed, and buffer memory addresses are changed. (4) Specifications: Transmission speed is changed. (5) Functions: Changed (No printer function for the A1SJ71UC24-R2, No link dedicated instructions for the A1SJ71QC24N1-R2)
	A1SJ71UC24-R4	RJ71C24-R4	(1) External wiring: Changed (2) Number of slots: Not changed (3) Programs: I/O signals are changed, and buffer memory addresses are changed. (4) Specifications: Transmission speed is changed. (5) Functions: Changed (No printer function)
Ethernet interface	A1SJ71E71N3-T A1SJ71QE71N3-T	RJ71EN71	(1) External wiring: Not changed (2) Number of slots: Not changed (3) Programs: I/O signals are changed, and buffer memory addresses are changed. (4) Specifications: Not changed (5) Functions: Changed (MC protocol 1E frame cannot be used.)
	A1SJ71E71N-B5 A1SJ71QE71N-B5	RJ71EN71	(1) External wiring: Changed (15-pin D-sub connector \rightarrow RJ45) (2) Number of slots: Not changed (3) Programs: I/O signals are changed, and buffer memory addresses are changed. (4) Specifications: Changed (10BASE \rightarrow 10BASE-T) (5) Functions: Changed (MC protocol 1E frame cannot be used.)
	A1SJ71E71N-B2 A1SJ71QE71N-B2	RJ71EN71	(1) External wiring: Changed (BNC connector \rightarrow RJ45) (2) Number of slots: Not changed (3) Programs: I/O signals are changed, and buffer memory addresses are changed. (4) Specifications: Changed (10BASE2 \rightarrow 10BASE-T) (5) Functions: Changed (MC protocol 1E frame cannot be used.)
Intelligent communication	A1SD51S	None	Consider replacing the existing system with a system on other networks.
Modem interface	A1SJ71CMO-S3	None	Consider replacing the existing system with a system on other networks.
ID interface	A1SD35ID1 A1SD35ID2	None	Consider replacing the existing system with a system on other networks.
Memory card interface module	A1SD59J-S2	None	Consider replacing the current communication method with other communication method such as RS-232. Consider replacing the memory card used with an SD memory card.

10.2 Specification Comparison Tables

Serial communication modules

A1SJ71QC24N1 and RJ71C24

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SJ71QC24N1	RJ71C24		
Interface	CH 1	RS-232-compliance (D-sub 9 pin)		\bigcirc	
	CH 2	RS-422/485 compliant (2-piece terminal block)		\bigcirc	
Communication method	MC protocol communication	Half-duplex communication		\bigcirc	
	Non-procedural communication	Full-duplex communication/Half-duplex communication		\bigcirc	
	Bidirectional protocol communication	Full-duplex communication/Half-duplex communication		\bigcirc	
Synchronization method		Start-stop synchronization (asynchronous method)		\bigcirc	
Transmission speed		$\begin{aligned} & 300,600,1200,2400,4800,9600, \\ & 14400,19200,28800,38400, \\ & 57600,115200 \mathrm{bps} \end{aligned}$	$\begin{aligned} & \text { 1200, 2400, 4800, 9600, 14400, } \\ & \text { 19200, 28800, 38400, 57600, } \\ & 115200,230400 \mathrm{bps} \end{aligned}$	\triangle	The transmission speed which can be set differs depending on the specifications.
Data format	Start bits	1		\bigcirc	
	Data bits	7/8		\bigcirc	
	Parity bits	1 (vertical parity)/none		\bigcirc	
	Stop bits	1/2		\bigcirc	
Access cycle	MC protocol communication	One request is processed during the END processing of the CPU module of the mounted station.		\bigcirc	
	Non-procedural/ bidirectional communication	Transmission can be performed at each send request, and reception is available at any time.		\bigcirc	
Error detection	Parity check	Performed (odd/even)/none		\bigcirc	
	Sum check	Performed (MC protocol/Bidirectional)/none		\bigcirc	
Transmission control		*1		\bigcirc	
Line configuration (connection)	RS-232	1:1		\bigcirc	
	RS-422/485	1: 1, 1: $\mathrm{n}, \mathrm{m}: \mathrm{n}$	1: $1,1: n, n: 1, m: n$	\bigcirc	
Line configuration (data communication) RS-232	MC protocol communication	1:1		\bigcirc	
	Non-procedural communication	1:1		\bigcirc	
	Bidirectional protocol communication	1:1		\bigcirc	
Line configuration (data communication) RS-422/485	MC protocol communication	1: 1, 1: $\mathrm{n}, \mathrm{m}: \mathrm{n}$		\bigcirc	
	Non-procedural communication	1: 1, 1: n	1: 1, 1: n, n: 1	\bigcirc	
	Bidirectional protocol communication	1:1		\bigcirc	
Transmission distance (Overall distance)	RS-232	Max. 15 m		\bigcirc	
	RS-422/485	1200m maximum (overall distance)		\bigcirc	
Number of E^{2} PROM writes/flash ROM writes		Maximum 100000 times to the same area		\bigcirc	

Item	Specifications		Compatibility	Precautions	
	A1SJ71QC24N1	RJ71C24			
Number of occupied I/O points	32 points (I/O assignment: special 32 points $)$	32 points (I/O assignment: Intelligent 32 points)	0		
Internal current consumption $(5 V D C)$	0.38 A	0.31 A	-		
External dimensions	$130(\mathrm{H}) \times 34.5(\mathrm{~W}) \times 93.6(\mathrm{D}) \mathrm{mm}$	$106(\mathrm{H}) \times 27.8(\mathrm{~W}) \times 110(\mathrm{D}) \mathrm{mm}$	-		
Weight	0.30 kg	0.16 kg	-		

*1 The following table lists the transmission controls.

A1SJ71QC24N1

Item	RS-232	$\mathbf{R S} \mathbf{- 4 2 2 / 4 8 5}$
DTR/DSR (ER/DR) control	\bigcirc	\times
RS/CS control	\bigcirc	\times
CD signal control	\bigcirc	\times
DC1/DC3 (Xon/Xoff) control	\bigcirc	\bigcirc
DC2/DC4 control		

RJ71C24

Item	RS-232	RS-422/485
DTR/DSR control	\bigcirc	\times
RS/CS control	\bigcirc	\times
CD (DCD) signal control	\bigcirc	\times
DC1/DC3 (Xon/Xoff) control DC2/DC4 control	\bigcirc	\bigcirc

DTR/DSR signal control and DC code control are selected by the user.

A1SJ71UC24-R2/A1SJ71QC24N1-R2 and RJ71C24-R2

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SJ71UC24-R2/ A1SJ71QC24N1-R2	RJ71C24-R2		
Interface	CH1	RS-232-compliance (D-sub 9 pin)	RS-232-compliance (D-sub 9 pin)	\bigcirc	
	CH 2	RS-232-compliance (D-sub 9 pin) A1SJ71UC24-R2: Not available A1SJ71QC24N1-R2: Available	RS-232-compliance (D-sub 9 pin)	\bigcirc	
Communication method	MC protocol communication	Half-duplex communication		\bigcirc	
	Non-procedural protocol communication	Full-duplex communication/Half-duplex communication		\bigcirc	
	Bidirectional protocol communication	Full-duplex communication/Half-duplex communication		\bigcirc	
Synchronization method		Start-stop synchronization (asynchronous method)		\bigcirc	
Transmission speed		A1SJ71UC24-R2: 300, 600, 1200, 2400, 4800, 9600, 19200bps A1SJ71QC24N1-R2: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200bps	$\begin{aligned} & \text { 1200, 2400, 4800, 9600, 14400, } \\ & \text { 19200, 28800, 38400, 57600, } \\ & 115200,230400 \mathrm{bps} \end{aligned}$	\triangle	The transmission speed which can be set differs depending on the specifications.
Data format	Start bits	1		\bigcirc	
	Data bits	7/8		\bigcirc	
	Parity bits	1 (vertical parity)/none		\bigcirc	
	Stop bits	1/2		\bigcirc	
Access cycle	MC protocol communication	One request is processed during the END processing of the CPU module of the mounted station.		\bigcirc	
	Non-procedural/ bidirectional communication	Transmission can be performed at each send request, and reception is available at any time.		\bigcirc	
Error detection	Parity check	Performed (odd/even)/none		\bigcirc	
	Sum check	Performed (MC protocol/Bidirectional)/none		\bigcirc	
Transmission control		*1		\bigcirc	
Line configuration (connection)	RS-232	1:1		\bigcirc	
Line configuration (data communication) RS-232	MC protocol communication	1: 1		\bigcirc	
	Non-procedural communication	1:1		\bigcirc	
	Bidirectional protocol communication	1:1		\bigcirc	
Transmission distance (Overall distance)	RS-232	15 m maximum		\bigcirc	
	RS-422/485	-		-	
Number of E^{2} PROM writes/flash ROM writes		Maximum 100000 times to the same area		\bigcirc	
Number of occupied I/O points		32 points (I/O assignment: special 32 points)	32 points (I/O assignment: Intelligent 32 points)	\bigcirc	
Internal current consumption(5VDC)		A1SJ71UC24-R2: 0.10A A1SJ71QC24N1-R2: 0.30A	0.20A	-	
External dimensions		130(H) $\times 34.5$ (W) $\times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		A1SJ71UC24-R2: 0.22kg A1SJ71QC24N1-R2: 0.26kg	0.14 kg	-	

*1 The following table lists the transmission controls.

A1SJ71UC24-R2

Item	RS-232
DTR/DSR (ER/DR) control	\bigcirc
CD signal control	\bigcirc
DC1/DC3 (Xon/Xoff) control	O
DC2/DC4 control	

A1SJ71QC24N1-R2

Item	RS-232
DTR/DSR (ER/DR) control	\bigcirc
RS/CS control	\bigcirc
CD signal control	\bigcirc
DC1/DC3 (Xon/Xoff) control	\bigcirc
DC2/DC4 control	

RJ71C24-R2

Item	RS-232
DTR/DSR control	\bigcirc
RS/CS control	\bigcirc
CD (DCD) signal control	\bigcirc
DC1/DC3 (Xon/Xoff) control	\bigcirc
DC2/DC4 control	

DTR/DSR signal control and DC code control are selected by the user.

A1SJ71UC24-R4 and RJ71C24-R4

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SJ71UC24-R4	RJ71C24-R4		
Interface	CH 1	RS-422/485 compliant (2-piece terminal block)	RS-422/485-compliance (2-piece plug-in connector socket block)	\triangle	Wiring needs to be changed after replacement.
	CH 2	-	RS-422/485-compliance (2-piece plug-in connector socket block)	-	
Communication method	MC protocol communication	Half-duplex communication		\bigcirc	
	Non-procedural communication	Full-duplex communication/Half-duplex communication		\bigcirc	
	Bidirectional protocol communication	Full-duplex communication/Half-duplex communication		\bigcirc	
Synchronization method		Start-stop synchronization (asynchronous method)		\bigcirc	
Transmission speed		$\begin{aligned} & 300,600,1200,2400,4800,9600 \text {, } \\ & \text { 19200bps } \end{aligned}$	$\begin{aligned} & \text { 1200, 2400, 4800, 9600, 14400, } \\ & \text { 19200, 28800, 38400, 57600, } \\ & 115200,230400 \mathrm{bps} \end{aligned}$	\triangle	The transmission speed which can be set differs depending on the specifications.
Data format	Start bits	1		\bigcirc	
	Data bits	7/8		\bigcirc	
	Parity bits	1 (vertical parity)/none		\bigcirc	
	Stop bits	1/2		\bigcirc	
Access cycle	MC protocol communication	One request is processed during the END processing of the CPU module of the mounted station.		\bigcirc	
	Non-procedural/ bidirectional communication	Transmission can be performed at each send request, and reception is available at any time.		\bigcirc	
Error detection	Parity check	Performed (odd/even)/none		\bigcirc	
	Sum check	Performed (MC protocol/Bidirectional)/none		\bigcirc	
Transmission control		*1		\bigcirc	
Line configuration (connection)	RS-422/485	1: 1, 1:n, m: n	1: 1, 1: $\mathrm{n}, \mathrm{n}: 1, \mathrm{~m}: \mathrm{n}$	\bigcirc	
Line configuration (data communication) RS-422/485	MC protocol communication	1: 1, 1: n, m: n		\bigcirc	
	Non-procedural communication	1: 1, 1: n	1: 1, 1: $\mathrm{n}, \mathrm{n}: 1$	\bigcirc	
	Bidirectional protocol communication	1:1		\bigcirc	
Transmission distance (Overall distance)	RS-422/485	1200m maximum (overall distance)		\bigcirc	
Number of E^{2} PROM writes/flash ROM writes		Maximum 100000 times to the same area		\bigcirc	
Number of occupied I/O points		32 points (I/O assignment: special 32 points)	32 points (I/O assignment: Intelligent 32 points)	\bigcirc	
Internal current consumption (5VDC)		0.10A	0.42A	-	
External dimensions		130(H) $\times 34.5(\mathrm{~W}) \times 93.6$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.25 kg	0.13 kg	-	

*1 The following table lists the transmission controls.
A1SJ71UC24-R4

Item	RS-422/485
DTR/DSR (ER/DR) control	\times
CD signal control	\times
DC1/DC3 (Xon/Xoff) control	O
DC2/DC4 control	

RJ71C24-R4

Item	RS-422/485
DTR/DSR control	\times
RS/CS control	\times
CD (DCD) signal control	\times
DC1/DC3 (Xon/Xoff) control	
DC2/DC4 control	

DTR/DSR signal control and DC code control are selected by the user.

Ethernet interface modules

A1SJ71E71N3-T/A1SJ71QE71N3-T and RJ71EN71 (Q-compatible Ethernet)

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SJ71E71N3-T/ A1SJ71QE71N3-T	RJ71EN71 (Q-compatible Ethernet)		
Transmission specifications	Type	10BASE-T	1000BASE-T, 100BASE-TX, 10BASE-T	\bigcirc	
	Transmission speed	10Mbps (half-duplex)	```1Gbps 100Mbps (full-duplex/half-duplex) 10Mbps (full-duplex/half-duplex)```	\bigcirc	
	Interface	RJ45	RJ45 (AUTO MDI/MDI-X)	\bigcirc	
	Transmission method	Base band		\bigcirc	
	Maximum segment length	100 m (length between a hub and a node)		\bigcirc	
	Maximum number of nodes/connection	Cascade connection: 4 levels maximum	Cascade connection: 1000BASE-T: Depends on the switching hub used. 100BASE-TX: 2 levels maximum 10BASE-T: 4 levels maximum	\bigcirc	
Transfer data storage memory	Number of allowable simultaneously open connections	8 connections	16 connections	\bigcirc	
	Fixed buffer	1 K words $\times 8$	1 K words $\times 16$	\bigcirc	
	Random access buffer	A1SJ71E71N3-T: 3K words $\times 2$ A1SJ71QE71N3-T: 6K words $\times 1$	6 K words $\times 1$	\bigcirc	
Number of occupied I/O points		32 points (I/O assignment: special 32 points)	32 points (I/O assignment: Intelligent 32 points)	\bigcirc	
Internal current consumption (5VDC)		A1SJ71E71N3-T: 0.69A A1SJ71QE71N3-T: 0.53A	0.82A	-	
External dimensions		130(H) $\times 34.5$ (W) $\times 94$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		A1SJ71E71N3-T: 0.30kg A1SJ71QE71N3-T: 0.17kg	0.17 kg	-	

A1SJ71E71N-B5/A1SJ71QE71N-B5 and RJ71EN71 (Q-compatible Ethernet)

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SJ71E71N-B5/ A1SJ71QE71N-B5	RJ71EN71 (Q-compatible Ethernet)		
Transmission specifications	Type	10BASE5	1000BASE-T, 100BASE-TX, 10BASE-T	\times	Convert 10BASE5 to 10BASE-T.
	Transmission speed	10Mbps (half-duplex)	1Gbps 100Mbps (full-duplex/half-duplex) 10Mbps (full-duplex/half-duplex)	\bigcirc	
	Interface	15-pin D-sub connector (AUI)	RJ45 (AUTO MDI/MDI-X)	\times	Wiring needs to be changed after replacement.
	Transmission method	Base band		\bigcirc	
	Maximum node-tonode distance	2500m	-	-	
	Maximum segment length	500m	100m (length between a hub and a node)	\times	Connect another hub if the segment length is 100 meters or longer.
	Maximum number of nodes/connection	100/segment	Cascade connection: 1000BASE-T: Depends on the switching hub used. 100BASE-TX: 2 levels maximum 10BASE-T: 4 levels maximum	-	
	Minimum node interval	2.5m	-	-	
Transfer data storage memory	Number of allowable simultaneously open connections	8 connections	16 connections	\bigcirc	
	Fixed buffer	1 K words $\times 8$	1 K words $\times 16$	\bigcirc	
	Random access buffer	A1SJ71E71N-B5: 3K words $\times 2$ A1SJ71QE71N-B5: 6K words $\times 1$	6 K words $\times 1$	\bigcirc	
Number of occupied I/O points		32 points (I/O assignment: special 32 points)	32 points (l/O assignment: Intelligent 32 points)	\bigcirc	
Internal current consumption (5VDC)		A1SJ71E71N-B5: 0.57A A1SJ71QE71N-B5: 0.40A	0.82A	-	
External dimensions		130(H) $\times 34.5$ (W) $\times 94$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.19 kg	0.17 kg	-	

A1SJ71E71N-B2/A1SJ71QE71N-B2 and RJ71EN71 (Q-compatible Ethernet)

\bigcirc : Compatible, \triangle : Partly changed, \times : Incompatible, 一: Not applicable

Item		Specifications		Compatibility	Precautions
		A1SJ71E71N-B2/ A1SJ71QE71N-B2	RJ71EN71 (Q-compatible Ethernet)		
Transmission specifications	Type	10BASE2	1000BASE-T, 100BASE-TX, 10BASE-T	\times	Convert 10BASE2 to 10BASE-T.
	Transmission speed	10Mbps (half-duplex)	1Gbps 100Mbps (full-duplex/half-duplex) 10Mbps (full-duplex/half-duplex)	\bigcirc	
	Interface	BNC connector	RJ45 (AUTO MDI/MDI-X)	\times	Wiring needs to be changed after replacement.
	Transmission method	Base band		\bigcirc	
	Maximum node-tonode distance	925 m	-	-	
	Maximum segment length	185m	100m (length between a hub and a node)	\times	Connect another hub if the segment length is 100 meters or longer.
	Maximum number of nodes/connection	30/segment	Cascade connection: 1000BASE-T: Depends on the switching hub used. 100BASE-TX: 2 levels maximum 10BASE-T: 4 levels maximum	-	
	Minimum node interval	0.5 m	-	-	
Transfer data storage memory	Number of allowable simultaneously open connections	8 connections	16 connections	\bigcirc	
	Fixed buffer	1 K words $\times 8$	1 K words $\times 16$	\bigcirc	
	Random access buffer	A1SJ71E71N-B2: 3K words $\times 2$ A1SJ71QE71N-B2: 6K words $\times 1$	6 K words $\times 1$	\bigcirc	
Number of occupied I/O points		32 points (I/O assignment: special 32 points)	32 points (I/O assignment: Intelligent 32 points)	\bigcirc	
Internal current consumption (5VDC)		A1SJ71E71N-B2: 0.66A A1SJ71QE71N-B2: 0.53A	0.82A	-	
External dimensions		130(H) $\times 34.5$ (W) $\times 94$ (D) mm	106(H) $\times 27.8$ (W) $\times 110$ (D) mm	-	
Weight		0.20 kg	0.17 kg	-	

10.3 Function Comparison Tables

Computer link/serial communication modules

A1SJ71UC24-R2/A1SJ71UC24-R4 and RJ71C24

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function			MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Precautions
			A1SJ71UC24-R2 A1SJ71UC24-R4	RJ71C24-R2 RJ71C24-R4	
Communication using dedicated protocol ${ }^{* 1}$	Device memory read/ write	Reads/writes data on the programmable controller CPU from/to the external devices.	\bigcirc	\triangle	Command to be used, accessible device ranges, and accessing to other stations are restricted. The program on the external device needs to be changed.
	On-demand	Transmits data from the programmable controller CPU to external devices.	\bigcirc	\triangle	Change it to a sequence program that uses the dedicated instruction (ONDEMAND).
Non-procedural communication	Data transmission Programmable controller \rightarrow External device	Transmits data from the programmable controller CPU to external devices.	\bigcirc	\triangle	Change it to a sequence program that uses the dedicated instruction (OUTPUT/INPUT).
	Data reception Programmable controller \leftarrow External device	Receives data from external devices.	\bigcirc	\triangle	
Bidirectional communication	Data transmission Programmable controller \rightarrow External device	Transmits data from the programmable controller CPU to external devices.	\bigcirc	\triangle	Change it to a sequence program that uses the dedicated instruction (BIDOUT/ BIDIN).
	Data reception Programmable controller \leftarrow External device	Receives data from external devices.	\bigcirc	\triangle	
Transmission using printer function		Transmits messages (character strings) from the programmable controller CPU to the printer.	\bigcirc	\times	Change it to a sequence program that uses the dedicated instruction (PRR). (Messages are transmitted by nonprocedural protocol using user frames.)
Transmission control	DTR/DSR control, CD signal control	Controls data transmission/reception with external devices by RS-232 control signals.	\bigcirc	\bigcirc	
	DC code control	Sends/receives DC codes (including Xon/ Xoff) to control data transmission/reception with external devices.	\bigcirc	\bigcirc	

[^10]
A1SJ71QC24N1/A1SJ71QC24N1-R2 and RJ71C24/RJ71C24-R2

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function			MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Precautions
			A1SJ71QC24N1 A1SJ71QC24N1-R2	RJ71C24 RJ71C24-R2	
Communication using dedicated protocol ${ }^{* 1}$	Communications in ASCII mode	Communicates in dedicated protocol using ASCII data. (Communications with QnA compatible 2C/ 3C/4C frame (format $1 / 2 / 3 / 4$), communications with A compatible 1C frame (format $1 / 2 / 3 / 4$))	\bigcirc	\bigcirc	
	Communications in binary mode	Communicates in dedicated protocol using binary data. (Communications with QnA compatible 4C frame (format 5))	\bigcirc	\bigcirc	
	Device memory read/write	Reads/writes data on the programmable controller CPU from/to the external devices.	\bigcirc	\bigcirc	
	Access to another station	Reads/writes data from/to programmable controller CPU of another station on the network system.	\bigcirc	\triangle	The program on the personal computer side may be required to change it depending on the network used.
	On-demand	Transmits data from the programmable controller CPU to external devices.	\bigcirc	\bigcirc	
Non-procedural protocol communication	Data transmission/ reception programmable controller \leftrightarrow External device	Transmits/receives data between the programmable controller CPU and external devices.	\bigcirc	\bigcirc	
	Data transmission/ reception in user frames	Transmits/receives data using the data (user frames) registered to the serial communication module.	\bigcirc	\bigcirc	
	Data transmission/ reception by ASCII binary conversion	Converts binary data to ASCII data to transmit the data. Received ASCII data is also converted to binary data.	\bigcirc	\bigcirc	
Bidirectional protocol communication	Data transmission/ reception programmable controller \leftrightarrow External device	Transmits/receives data between the programmable controller CPU and external devices.	\bigcirc	\bigcirc	
	Data transmission/ reception by ASCII binary conversion	Converts binary data to ASCII data to transmit the data. Received ASCII data is also converted to binary data.	\bigcirc	\bigcirc	
Communication by dedicated link instruction (SEND, RECV, READ, RITE, REQ)		Transmits/receives data with programmable controller CPU of another station on a multidrop connection by link dedicated instructions.	\bigcirc	\times	In the MELSEC iQ-R series, the function that communicates data with programmable controller CPU of another station on a multidrop connection by link dedicated instructions is not supported. Communication method needs to be changed. Delete data communication program by link dedicated instruction.

[^11]
Ethernet interface modules

A1SJ71E71N3-T/A1SJ71E71N-B5/A1SJ71E71N-B2 and RJ71EN71

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable

Function		MELSEC-AnS/ QnAS series	MELSEC iQ-R series	Precautions
		A1SJ71E71N3-T A1SJ71E71N-B5 A1SJ71E71N-B2	RJ71EN71 (Qcompatible Ethernet)	
Initial processing	Enables data communications with an external device.	\bigcirc	\triangle	Use module parameters.
Open processing	Connects the communication line to enable data communications with external devices.	\bigcirc	\triangle	Change it to a sequence program that uses the dedicated instruction (OPEN/CLOSE).
Communications using fixed buffer (procedural/ nonprocedural)	Sends/receives any data between the programmable controller CPU and external devices using the fixed buffer on the Ethernet interface module.	\bigcirc	\triangle	Change it to a sequence program that uses the dedicated instruction (BUFSND/BUFRCV).
Communications using random access buffer	Reads/writes data from multiple connected devices to the random access buffer on the Ethernet interface module.	\bigcirc	\bigcirc	
Read/write communications of programmable controller CPU internal data	Reads/writes data on the programmable controller CPU from/to the external devices.	\bigcirc	\triangle	Some of the commands and device ranges are restricted.
Broadcast communication	Sends/receives data to all external devices on the same Ethernet as the Ethernet interface module by UDP/IP-based data communications. (Broadcast)	\bigcirc	\bigcirc	
Communications while the programmable controller CPU is stopped	Continues data communications even when the programmable controller CPU is in the stop state. (during Passive open processing)	\bigcirc	\triangle	Use module parameters.
Router relay function	Communicates data through a router and a gateway.	\bigcirc	\triangle	Use module parameters.
Existence check of external device	Checks whether a connected device is normally operating after a connection is established (open processing).	\bigcirc	\triangle	Change it to a sequence program that uses the dedicated instruction (OPEN). Only KeepAlive is available for TCP/IP.
Communications using pairing open	Opens connection with the connection for reception and connection for transmission as a single pair. (For communications using a fixed buffer)	\bigcirc	\triangle	Change it to a sequence program that uses the dedicated instruction (OPEN).
Timer setting value units for data exchange	Sets the unit ($500 \mathrm{~ms} / 2 \mathrm{~s}$) of each time value.	\bigcirc	\triangle	Use module parameters. Each timer value can be set in increments of 100 ms .

A1SJ71QE71N3-T/A1SJ71QE71N-B5/A1SJ71QE71N-B2 and RJ71EN71

\bigcirc : Compatible/function available, \triangle : Partly changed, \times : Incompatible/function not available, 一: Not applicable
$\begin{array}{l|l|l|l|l}\hline \text { Function } & \begin{array}{l}\text { MELSEC-AnS/ } \\ \text { QnAS } \\ \text { series }\end{array} & \begin{array}{l}\text { MELSEC iQ-R } \\ \text { series }\end{array} & \text { Precautions } \\$\cline { 3 - 5 } \& A1SJ71QE71N3-T
 A1SJ71QE71N-B5
 RJ71EN71 (Q-
 compatible
 Ethernet)\end{array}$]$.

10.4 Precautions for Replacement

Serial communication modules

I/O signals and buffer memory areas

The assignments of I/O signals and buffer memory areas differ between the MELSEC-AnS/QnAS series and the MELSEC iQR series.

When the I/O signals and buffer memory areas are used in the MELSEC-AnS/QnAS series program, the program needs to be corrected for the MELSEC iQ-R series.

Send area and receive area in the refresh setting

In MELSEC iQ-R series, the range of the send area and the receive area cannot be specified in the refresh setting. All the send and receive areas listed below are refreshed.

- Send area (CH1): Buffer memory address 1024 to 1535 (400 H to 5FFH)
- Receive area (CH1): Buffer memory address 1536 to 2047 (600 H to 7FFH)
- Send area (CH2): Buffer memory address 2048 to 2559 (800 H to 9FFH)
- Receive area (CH2): Buffer memory address 2560 to 3071 (A00H to BFFH)

Processing time

The time such as the processing time for data communications differ between the MELSEC-AnS/QnAS series and the MELSEC iQ-R series.
For details on the processing time, refer to the manual for the module used.

Ethernet interface modules

Dedicated instruction

The dedicated instructions differ between the MELSEC-AnS/QnAS series and the MELSEC iQ-R series.
When dedicated instructions are used in the MELSEC-AnS/QnAS series program, the program needs to be corrected for MELSEC iQ-R series.

I/O signals and buffer memory areas

The assignments of I/O signals and buffer memory areas differ between the MELSEC-AnS/QnAS series and the MELSEC iQR series.

When the I/O signals and buffer memory areas are used in the MELSEC-AnS/QnAS series program, the program needs to be corrected for the MELSEC iQ-R series.

Parameter registration to E^{2} PROM

The MELSEC iQ-R series CC-Link system master/local module does not support the use of E^{2} PROMs. Delete the sequence program corresponding to the parameter registration to $\mathrm{E}^{2} \mathrm{PROM}$.

Initial processing/End processing

Both the initial processing/End processing by the sequence program and the initial processing by the network parameter cannot be used together.

Delete the processing by the sequence program when using the network parameter.

Open processing/close processing

Do not use both the open processing/close processing by the I/O signals and the processing by the dedicated instruction (OPEN/CLOSE) on the same connection.

Passive open processing

For the MELSEC iQ-R series, an open request cannot be canceled before the open processing is completed once Passive open processing is executed. Execute close processing after the open processing is completed.

Communications using a fixed buffer

Do not use both communications using a fixed buffer by the I/O signals and the communications by the dedicated instruction (BUFSND/BUFRCV/BUFRCVS) on the same connection.

Processing time

The time such as the processing time for data communications differ between the MELSEC-AnS/QnAS series and the MELSEC iQ-R series.

For details on the processing time, refer to the manual for the module used.

Replacement from 10BASE5/10BASE2 to 100BASE-TX/10BASE-T

Convert 10BASE5/10BASE2 into 10BASE-T/100BASE-TX.
Use a media converter and convert the interface from 10BASE5 or 10BASE2 to 10BASE-T.
For details, refer to the following.
[]Production discontinuation of MELSEC-Q series Ethernet interface module/FL-net (OPCN-2) interface module (FA-A0190)

SLMP (MC protocol) communication setting

Select "SLMP Connection Module" for the MELSEC iQ-R series.

Random access buffer communication setting

Select the connection target module, and then select "Random Access Buffer" in "Communication Method" for the MELSEC iQ-R series.

Broadcast setting

Select the connection target module, and then select "Broadcast Send" or "Broadcast Receive" in "Communication Method" for the MELSEC iQ-R series.

Unused connection setting

Set "MELSOFT Connection Module" in the unused connection number for the MELSEC iQ-R series.

TCP/IP connection module setting

Setting the connected device automatically determines the protocol in the MELSEC iQ-R series.

Alive check setting

For the MELSEC iQ-R series, set whether to perform an alive check in "External Device Configuration" for each connection. Only the KeepAlive command can be used for the TCP/IP alive check.

Online change setting

For the MELSEC iQ-R series, enable the online change function in "Enable/Disable Online Change" under "Own Node Settings" of "Basic Settings" when the SLMP communications are performed. When the FTP server function is used, enable the function in "Allow Online Change" under "FTP Server Settings" of "Application Settings".

Send frame setting

Only "Ethernet (V2.0)" frame can be used for the MELSEC iQ-R series. "IEEE 802.3" frame can be used for received data only.

Gateway parameter settings

Set "Subnet Mask" or "Default Gateway" under "Own Node Settings" of "Basic Settings" and set "Gateway Information" under "Gateway Parameter Settings" of "Application Settings" for the MELSEC iQ-R series.

```
Point?
For details on these precautions, refer to the following
L]MELSEC iQ-R Module Configuration Manual
L]MMELSEC iQ-R Serial Communication Module User's Manual (Startup)
LIMMELSEC iQ-R Serial Communication Module User's Manual (Application)
LDMELSEC iQ-R Ethernet/CC-Link IE User's Manual (Startup)
LIMELSEC iQ-R Ethernet User's Manual (Application)
```


11 PROJECT REPLACEMENT

This section describes how to replace the MELSEC-AnS/QnAS series project with the MELSEC iQ-R series project. There are two methods for project replacement: one method uses MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool and the other method uses GX Developer, GX Works2, and GX Works3.

11.1 Replacement Using MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool

MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool

Icon	Description
	GX Developer format project
紫	GX Works2 format project
	GX Works3 format project
Point ${ }^{\text {P }}$ For details, refer to the following.	
	[DMELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool Operating Manual

Instant check of where to correct

If a special relay/special register area, an instruction, and a special function module which are not available for an RCPU are used in a program, the program needs to be corrected after converting a project.

MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool provides information of the parts to be corrected in two formats. By referring the information, the program can be corrected efficiently.

Outputting a review information list

Information such as the number of items to be corrected and corrective actions is output in HTML format.
For a special function module, information of a recommended module to replace is also displayed.

Inserting a line statement

A line statement is inserted on a part to be corrected in a program.
On the line statement, information before and after conversion and an alert are displayed.

System configuration

The following figure shows the system configuration of MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool for conversion.

MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool, GX Developer, GX Works2, and GX Works3 are required.

Software versions

The following table lists the software versions which are necessary for converting a project.

Software	Version
MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool	No restrictions
GX Developer	Version $8.503 Z$ or later
GX Works2	Version 1.590 Q or later
GX Works3	Version 1.066 U or later

Convertible projects

GX Developer format projects for the following CPU modules can be converted.

Series	Type	Program language	Label setting
QnACPU	Q2A, Q2AS(H), Q2AS1, Q2AS(H)S1, Q3A, Q4A, Q4AR	Ladder diagram*1	Do not use label
ACPU	A0J2H, A1FX, A1S, A1SJ, A1SH, A1SJH, A1N, A2C, A2CJ, A2N(S1), A2S, A2SH, A3N, A2A(S1), A3A, A2U(S1), A2US(S1), A2USH-S1, A3U, A4U		
CNC(M6/M7)	Q4A		
When using the SFC instruction in a ladder program, instructions other than the END instruction are deleted in a converted program.			

Point?

A project including an SFC program cannot be converted.
Convert the project after deleting the SFC program.

Function list

The following table lists the functions of MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool.

Function	Description
Converting a project	Converts a GX Developer format project into a GX Works3 format project automatically.
Outputting a review information list	Outputs a list of the following information as an HTML file when converting a project: a special relay/special register area, an instruction, and a special function module which are not available for an RCPU.
Embedding conversion information on a line statement	Embeds the following information on a line statement of a converted project (program) when converting a project: a special relay/special register area, an instruction, and a special function module which are not available for an RCPU.

Obtaining MELSEC-A/QnA->MELSEC iQ-R Conversion Support Tool

Please consult your local Mitsubishi Electric representative.

Installation and uninstallation

For the installation/uninstallation procedure of MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool, refer to the following.
[$]$ MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool Installation Instructions (BCN-P5999-1284)
The above manual is stored in the zip file where the installer is located.

Converting a project

This section describes the operations to convert a GX Developer format project into a GX Works3 format project.

Precautions

When a program exists after the END instruction in a conversion source program, the program after the END instruction will be deleted at conversion.

Operating procedure

1. Specify a conversion source GX Developer format project.
2. When a special function module is used in the source project, select the checkbox of "Special function module exists" and set the following items:

- Special function module type
- Special function module type name
- Start XY No. (HEX)
- In an input screen for special function module information, data can be copied and pasted.
- In the following case, review information is embedded on a line statement of a converted program: there is an instruction using a buffer memory address or an input/output signal of the special function module which was set in the step 2 in the source project. Also, the information is output as a list.
- If special function module information is not set in the step 2, a program is not detected as the one to be reviewed even when a special function module is used in the source project.

3. Select the checkbox of "ASC instruction is converted into \$MOV instruction." as necessary.
When converting the ASC instruction into the \$MOV instruction, the range of a device that the instruction uses increases by one word. Review a program when the device overlaps.
4. Specify a converted GX Works3 format project and an output folder for a review information list.

- The converted GX Works3 format project is saved as a single file format.
- A folder with the same name as that of the converted GX Works3 format project file is created in the output folder for a review information list.

5. Check the settings, and click the [Execute] button.
6. Select the checkboxes of "Start the project after conversion" and "Start the review information list" as necessary.
7. Click the [Completed] button.

Precautions

- A converted model is R120CPU. Therefore, change the model to match customer use.
- The number of displayed contacts of a program is not applied from a GX Developer format project. Change the number as necessary in GX Works3.
For the method to change the module type and the number of displayed contacts, refer to the following.
L]GX Works3 Operating Manual
- The $S(P) . / Z(P) . / G(P) \cdot / J(P)$. instruction of a QnACPU may not be converted. Check an unconverted instruction in a review information list and a line statement.

If MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool is forcibly terminated or an error occurs in the tool while converting a project, a process of GX Works3 converting the project in the background may remain. In this case, terminate the process of GX Works3 by any of the following methods:

- Log off the personal computer.
- Terminate the process of "GXW3.exe" in the task manager.

Review information list

Information regarding a special relay/special register area, an instruction, and a special function module which are not available for an RCPU is output in an HTML file.

Operating procedure

1. Right-click "Index.htm" stored in (output folder for review information list)(folder with the converted project name), and select [Open with] \Rightarrow [(Web browser)].
The conversion result of all the programs is displayed.
2. Click each link displayed in the "Display the Conversion Result" column to check the detail.

Point ${ }^{8}$
By checking the "Number of Detections" column, each number of unconverted special relay/special resister areas, instructions, and programs for special function modules to be reviewed can be confirmed.

Detail screen

The following figures are display examples of a review information list.
Ex.
Unconverted instruction (in order of step No.)

A search key is displayed on a review information list. In a converted GX Works3 format project, by searching the search key with the character string search function, the cursor can jump to the target line statement.

Ex.
Program for special function modules necessary in review (in alphabetical order of special function module name)
Program for Special Function Modules Necessary in Review (In Alphabetical Order of Module Name) Back to

[Program Name: SUB1]

"Recommended Module to Replace" is displayed in a detail screen of "Program for Special Function Modules Necessary in Review".
This handbook appears by clicking the module name, and shows a comparison table of recommended modules.

Line statement

Information regarding a special relay/special register area, an instruction, and a special function module which are not available for an RCPU is embedded on a line statement of a relevant ladder block.
A line statement type is set to "In Peripheral". ("*" is added at the beginning of the character strings.)
For the operation method of a statement, refer to the following.
LDGX Works3 Operating Manual

Point ρ

A search key (example: \#000000) for each step is added on a line statement.
This search key is also displayed on a review information list, and it is possible to search mutually with this key.

Operating procedure

1. Open a converted $G X$ Works 3 format project.

Point ${ }^{\ominus}$

A converted project is stored in the folder specified in the following.
\longmapsto Page 269 Converting a project
2. Select [View] \Rightarrow [Statement Display].
3. Check an embedded line statement.

Checking conversion information of special relay/special resister area and instruction

Special relay/special resister areas and instructions which are not available in an RCPU are converted as follows.
Special relay areas/special register areas: SM4095/SD4095
Instructions: OUT SM4095

Ex.

Special relay areas/special register areas

(1) Search key
(2) Conversion information

Point ${ }^{\rho}$

By searching a search key in a detail screen of a review information list, the cursor can jump to the review information for the program.

Checking conversion information of a special function module

Buffer memory addresses and input/output signals of a special function module are not converted.
Therefore, a statement that shows a necessity of reviewing is inserted on a part in which an instruction to access a special function module (FROM, DFRO, TO, DTO) and input/output signal exist.

(1) Search key
(2) Alert
(3) Model name of a special function module (start and end input/output numbers)

Point ${ }^{\rho}$

By searching a search key in a detail screen of a review information list, the cursor can jump to the review information for the program.

11.2 Replacement Using GX Developer/GX Works2/GX Works3

To replace projects by this method, use GX Developer Version 8.62Q or later and GX Works2 Version 1.05F or later. To read SFC programs, use GX Works2 Version 1.535 H or later and GX Works3 Version 1.020 W or later.

Project replacement flow

1. Operation with GX Developer

Change the PLC type of the ACPU project (in GX Developer format) (AnS/QnASCPU \rightarrow Q26UDEHCPU), and save it as the QCPU project (in GX Developer format).
2. Operation with GX Works2

Read the QCPU project (in GX Developer format), and save it as the QCPU project (in GX Works2 format).
3. Operation with GX Works3

Read the QCPU project (in GX Works2 format), and convert it into the RCPU project (in GX Works3 format).

Operation method

OOperation with GX Developer

\square	Project	Edit Find/Replace	Convert	View Onl
[New project ...			$\mathrm{Ctrl}+\mathrm{N}$
	Open project ...			Ctrl +O
	Close project			
71 F5	Save			Ctrl + S
90*	Save as ...			
睪	Delete project ...			
-	Verify ...			
	Copy ...			
\square		Data		>
	Change PLC type ...			
		port file		>
		ort file		>

Change PLC type	
PLC series	
QCPU[Qmode] OK PLC type Cancel Q2EUDEH	

MELSOFT series GX Developer (Unset project) - [LD(Ed

-	Project	Edit	Find/Replace	Convert	View
[New project ...				Ctrl +N
	Open project ...				Ctrl +0
	Close project				
71	Save				Ctrl + S
W9	Save as ...				

1. Select $[$ Project $] \Rightarrow$ [Change PLC Type].
2. Select "QCPU(Qmode)" and "Q26UDEHCPU", and click the [OK] button.
3. The following message appears. Read the message, and click the [Yes] button.
4. Select [Project] \Rightarrow [Save as] to save the project.

■Operation with GX Works2

MELSOFT Series GX Works2 (Untitled Project) - [[PRG]Read MAIN (Read Only)

MELSOFT Series GX Works2 (Untitled Project)

Project	ect Edit	Find/Replace	Compile	
\square	New...		$\mathrm{CtrI}+\mathrm{N}$	
\cdots	Open...		Ctrl +O	
	Close			
[1]	Save		Ctrl+	
Save As...				

■Operation with GX Works3

MELSOFT GX Works3
Do you want to read GX Works2 format project and change
module type to R120CPU?
The data will be changed as follows.

- The project will become unconverted after changing PLC
type. Please convert it after changing PLC type.
- Devices or instructions might need to be modified after
converting.
- When the instruction not supported by target PLC type is
used in ladder program or SFC program,
it changes to SMM4095 or SD4095 used instruction.
- When the FB/FUN not supported by target PLC type is used
in Structured Ladder/FBD program, it changes to the
undefined FB/FUN.
- When the device not supported by target PLC type is used in
ladder/structured ladder/FBD program,
it changes to SM44095 or SD4095. The device changes to the
character string argument by the instruction, it changes to
-SM4095" or 'SD4095*
Following setting will be changed according to the new
module type if existing.
- PL parameter/Network Parameter/Intelligent Function
Module/Options
Following setting will be back to its default if existing.
- Connection Destination
Following setting will be deleted if existing.
- User library program not being registered to program
setting.
- SFC program not being registered to program setting.
- Device Comment of SM/SD Device
- Remote Password

MELSOFT GX Works3 (Untitled Project)

2. The following message appears. Read the message, and click the [OK] button.
3. The GX Works2 format project is opened in GX Works3. The changes in project data are displayed in the "Output" window. Change the parameters and program (devices and instructions used) as required.
4. Select [Project] \Rightarrow [Change Module Type/Operation Mode], and select a model to be actually used. After the project is replaced, the model is automatically set to R120CPU. The user needs to set the model actually used.

11.3 Instruction Replacement

After the project is replaced, instructions that are not supported by the RCPU are converted into those using SM4095/ SD4095.

For details on the converted instructions, refer to the following.
[]Transition from MELSEC-AnS/QnAS (Small Type) Series to Q Series Handbook (Fundamentals)
LDMELSEC-Q Series to MELSEC iQ-R Series Migration Guide

11.4 Parameter Replacement

MELSEC-AnS/QnAS series uses GX Developer, but MELSEC iQ-R series uses GX Works3. Therefore, the user needs to review and re-set parameters.
For how to set parameters for the RCPU, refer to the following.
LDMELSEC iQ-R CPU Module User's Manual (Startup)

11.5

Special Relay and Special Register Replacement
Devices used as special relay and special register differ between the AnS/QnASCPU and the RCPU.
The special relay and special register areas of the AnS/QnASCPU are automatically converted into those of the RCPU when the project is replaced. At this time, the special relay and special register areas that are not supported by the RCPU are converted into SM4095/SD4095.
Search SM4095/SD4095, and modify the program as required.

Category	AnSCPU	QnASCPU	QCPU	RCPU
Special relay	M9000 to M9255	SM0 to SM2047*1	SM0 to SM2047*1 $^{* 1}$	SM0 to SM4096* ${ }^{* 1}$
Special register	D9000 to D9255	SD0 to SD2047 ${ }^{* 1}$	SD0 to SD2047 ${ }^{* 1}$	SD0 to SD4096*1

[^12]
11.6 Precautions for Replacement

Timer

The setting method, setting range, and processing method of the timer differ between the AnS/QnASCPU and the RCPU.
Modify the program as required.

Category		AnSCPU	QnASCPU	RCPU
Low-speed timer	Measurement unit	Fixed to 100 ms	In the range of 10 to 1000 ms (Default: 100ms)	In the range of 1 to 1000 ms (Default: 100ms)
	Specification method	[OUT Tn Kn]	[OUT Tn Kn]	
High-speed timer	Measurement unit	Fixed to 10 ms	In the range of 0.1 to 100 ms (Default: 10ms)	In the range of 0.01 to 100 ms (Default: 10ms)
	Specification method	[OUT Tn Kn]	[OUT H Tn Kn]	
Retentive timer	Measurement unit	Fixed to 100 ms	In the range of 10 to 1000 ms (Default: 100ms)	In the range of 1 to 1000 ms (Default: 100ms)
	Specification method	[OUT Tn Kn]	[OUT STn Kn]	
High-speed retentive timer	Measurement unit	None	In the range of 0.1 to 100 ms (Default: 10ms)	In the range of 0.01 to 100 ms (Default: 10ms)
	Specification method		[OUT H STn Kn]	
Setting range		1 to 32767		0 to 32767
Processing when 0 is set		Infinite (no timeout)	Instant-on	
Update processing of the current value, on/off processing of the contact		During the END processing	At execution of [OUT Tn Kn/OUT H Tn Kn]	

Counter

The processing method of the counter differs between the AnSCPU and the RCPU. Modify the program as required.

Category	AnSCPU	QnASCPU	RCPU
Specification method	[OUT Cn Kn]		
Update processing of the current value, on/off processing of the contact	During the END processing	At execution of [OUT Cn Kn]	

Display instructions

The RCPU does not support display instructions. Consider replacing them as described below.

Category	AnSCPU	QnASCPU	RCPU
PR	When M9049 is off, the characters before 00 H are output. When M9049 is on, 16 characters are output.	When SM701 is off, the characters before 00 H are output. When SM701 is on, 16 characters are output.	Consider replacing the instructions with a display unit or a touch panel.
PRC	A comment (16 characters) is output.	When SM701 is off, a comment (32 characters) is output. When SM701 is on, a comment (first 16 characters) is output.	

Index register

The index register area of the AnSCPU is " $Z, Z 1$ to $\mathrm{Z} 6, \mathrm{~V}, \mathrm{~V} 1$ to V 6 ", but the area of the RCPU is " Z 0 to $\mathrm{Z20}$ ". (The device "V" is used as the edge relay in the RCPU.)
The index register is replaced as follows when the project is converted.

Category	AnSCPU	RCPU
Index register	Z	Z0
	Z1 to Z6	Z1 to Z6
	V	Z7
	V1 to V6	Z8 to Z13

When the value other than $Z / Z 1$ is used as an index modified device in the contact instructions of the timer and the counter in the AnSCPU, it is converted into SM4095. Modify the program.

Index register 32-bit specification

For the index register 32-bit specification, the AnSCPU uses Z for the last 16 bits and V, the same area number as Z, for the first 16 bits.
However, the RCPU uses LZ (long index register) or ZZ (using two points of index register).
When the index register 32-bit specification is used in the AnSCPU, modify the program.

File register

The storage location of the file register differs between the AnS/QnASCPU and the RCPU.

Category	AnSCPU	QnASCPU	RCPU
Storage location	Memory cassette	Memory card (One card, two drives maximum)	Device/label memory, extended SRAM cassette
Maximum number of points	Depends on the memory cassette used.	1018K points (when two 2M memory cards are used)	R00/R01/R02CPU: 98304 R04/R08/R16CPU: Calculated by a formula. ${ }^{*}$
Number of points per block	8K points	32K points	32K points

*1 The maximum value is $[\alpha+\beta]$.
α : <Capacity of the R**CPU> (R04CPU: 160K words, R08CPU: 544K words, R16CPU: 800K words)
β : Capacity of the extended SRAM cassette
The value must be in the following range.
File register file storage area $\leq[\alpha+\beta]$

Dedicated instruction

The LEDA, LEDB, LEDC, SUB, and LEDR instructions used in the AnUSCPU are converted into the same format as basic instructions and application instructions in the RCPU.
However, the dedicated instructions that are not supported by the RCPU are converted into SM4095. Modify the program.

Category	RCPU/QnASCPU	AnUSCPU
Instruction		S, D, and n indicate the data used in instructions.

Boot operation (Writing programs to ROM)

The program memory of the RCPU is flash ROM, and therefore the boot operation is not required.

REVISIONS

*The manual number is given on the bottom left of the back cover.

Revision date	*Manual number	Description
December 2019	L(NA)08668ENG-A	First edition
September 2020	L(NA)08668ENG-B	■Added models RJ71LP21-25, MELSEC-A/QnA -> MELSEC iQ-R Conversion Support Tool ■Added part Section 11.1 ■Modified parts Chapter 9, Section, 11.1 $\rightarrow 11.2,11.2 \rightarrow 11.3,11.3 \rightarrow 11.4,11.4 \rightarrow 11.5, ~ 11.5 ~$ 11.6

Japanese manual number: L08667-B
This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.
© 2019 MITSUBISHI ELECTRIC CORPORATION

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.
[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.
8. Onerous repair term after discontinuation of production
(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.

Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.
3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.
4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

TRADEMARKS

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Unicode is either a registered trademark or a trademark of Unicode, Inc. in the United States and other countries.
The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.
In some cases, trademark symbols such as ${ }^{, T \mathrm{M},}$ or ${ }^{\text {'®1 }}$ are not specified in this manual.

Programmable Controller

Country/Region	Sales office	Tel/Fax
USA	MITSUBISHI ELECTRIC AUTOMATION, INC. 500 Corporate Woods Parkway, Vernon Hills, IL 60061, U.S.A.	$\begin{aligned} & \text { Tel : +1-847-478-2100 } \\ & \text { Fax : +1-847-478-2253 } \end{aligned}$
Mexico	MITSUBISHI ELECTRIC AUTOMATION, INC. Mexico Branch Mariano Escobedo \#69, Col. Zona Industrial, Tlalnepantla Edo. Mexico, C.P. 54030	Tel : +52-55-3067-7500
Brazil	MITSUBISHI ELECTRIC DO BRASIL COMÉRCIO E SERVIÇOS LTDA. Avenida Adelino Cardana, 293, 21 andar, Bethaville, Barueri SP, Brazil	$\begin{aligned} & \text { Tel : +55-11-4689-3000 } \\ & \text { Fax : +55-11-4689-3016 } \end{aligned}$
Germany	MITSUBISHI ELECTRIC EUROPE B.V. German Branch Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany	$\begin{aligned} & \text { Tel : +49-2102-486-0 } \\ & \text { Fax : +49-2102-486-1120 } \end{aligned}$
UK	MITSUBISHI ELECTRIC EUROPE B.V. UK Branch Travellers Lane, Hattield, Hertfordshire, AL10 8XB, U.K.	$\begin{aligned} & \text { Tel : +44-1707-28-8780 } \\ & \text { Fax : +44-1707-27-8695 } \end{aligned}$
Ireland	MITSUBISHI ELECTRIC EUROPE B.V. Irish Branch Westgate Business Park, Ballymount, Dublin 24, Ireland	$\begin{aligned} & \text { Tel : + } 353-1-4198800 \\ & \text { Fax : +353-1-4198890 } \end{aligned}$
Italy	MITSUBISHI ELECTRIC EUROPE B.V. Italian Branch Centro Direzionale Colleoni-Palazzo Sirio Viale Colleoni 7, 20864 Agrate Brianza(Milano) Italy	$\begin{aligned} & \text { Tel : +39-039-60531 } \\ & \text { Fax : +39-039-6053-312 } \end{aligned}$
Spain	MITSUBISHI ELECTRIC EUROPE, B.V. Spanish Branch Carretera de Rubí, 76-80-Apdo. 420, 08190 Sant Cugat del Vallés (Barcelona), Spain	$\begin{aligned} & \text { Tel: }:+34-935-65-3131 \\ & \text { Fax : +34-935-89-1579 } \end{aligned}$
France	MITSUBISHI ELECTRIC EUROPE B.V. French Branch 25, Boulevard des Bouvets, 92741 Nanterre Cedex, France	$\begin{aligned} & \text { Tel : + } 33-1-55-68-55-68 \\ & \text { Fax : +33-1-55-68-57-57 } \end{aligned}$
Czech Republic	MITSUBISHI ELECTRIC EUROPE B.V. Czech Branch Avenir Business Park, Radlicka 751/113e, 15800 Praha5, Czech Republic	$\begin{aligned} & \text { Tel : +420-251-551-470 } \\ & \text { Fax : +420-251-551-471 } \end{aligned}$
Poland	MITSUBISHI ELECTRIC EUROPE B.V. Polish Branch ul. Krakowska 50, 32-083 Balice, Poland	$\begin{aligned} & \text { Tel: }+48-12-347-65-00 \\ & \text { Fax : +48-12-630-47-01 } \end{aligned}$
Sweden	MITSUBISHI ELECTRIC EUROPE B.V. (Scandinavia) Fjelievägen 8, SE-22736 Lund, Sweden	$\begin{aligned} & \text { Tel : + 46-8-625-10-00 } \\ & \text { Fax : +46-46-39-70-18 } \end{aligned}$
Russia	MITSUBISHI ELECTRIC (RUSSIA) LLC St. Petersburg Branch Piskarevsky pr. 2, bld 2, lit "Sch", BC "Benua", office 720; 195027 St. Petersburg, Russia	$\begin{aligned} & \text { Tel : +7-812-633-3497 } \\ & \text { Fax : +7-812-633-3499 } \end{aligned}$
Turkey	MITSUBISHI ELECTRIC TURKEY A.Ş Ümraniye Branch Serifali Mah. Kale Sok. No:41 34775 Umraniye - Istanbul, Turkey	$\begin{aligned} & \text { Tel : +90-216-969-2500 } \\ & \text { Fax : +90-216-526-3995 } \end{aligned}$
UAE	MITSUBISHI ELECTRIC EUROPE B.V. Dubai Branch Dubai Silicon Oasis, P.O.BOX 341241, Dubai, U.A.E.	$\begin{aligned} & \text { Tel : + } 971-4-3724716 \\ & \text { Fax : +971-4-3724721 } \end{aligned}$
South Africa	ADROIT TECHNOLOGIES 20 Waterford Office Park, 189 Witkoppen Road, Fourways, South Africa	$\begin{aligned} & \text { Tel: }+27-11-658-8100 \\ & \text { Fax : +27-11-658-8101 } \end{aligned}$
China	MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. No. 1386 Hongqiao Road, Mitsubishi Electric Automation Center, Shanghai, China	$\begin{aligned} & \text { Tel : +86-21-2322-3030 } \\ & \text { Fax : +86-21-2322-3000 } \end{aligned}$
Korea	MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD. 7F-9F, Gangseo Hangang Xi-tower A, 401, Yangcheon-ro, Gangseo-Gu, Seoul 07528, Korea	$\begin{aligned} & \text { Tel : +82-2-3660-9530 } \\ & \text { Fax : +82-2-3664-8372 } \end{aligned}$
Singapore	MITSUBISHI ELECTRIC ASIA PTE. LTD. 307, Alexandra Road, Mitsubishi Electric Building, Singapore 159943	$\begin{aligned} & \text { Tel : }+65-6473-2308 \\ & \text { Fax : }+65-6476-7439 \end{aligned}$
Thailand	MITSUBISHI ELECTRIC FACTORY AUTOMATION (THAILAND) CO., LTD. 12th Floor, SV.City Building, Office Tower 1, No. 896/19 and 20 Rama 3 Road, Kwaeng Bangpongpang, Khet Yannawa, Bangkok 10120, Thailand	$\begin{aligned} & \text { Tel : +66-2682-6522 } \\ & \text { Fax : +66-2682-6020 } \end{aligned}$
Vietnam	MITSUBISHI ELECTRIC VIETNAM COMPANY LIMITED Hanoi Branch 6th Floor, Detech Tower, 8 Ton That Thuyet Street, My Dinh 2 Ward, Nam Tu Liem District, Hanoi, Vietnam	$\begin{aligned} & \text { Tel: }:+84-4-3937-8075 \\ & \text { Fax : +84-4-3937-8076 } \end{aligned}$
Malaysia	MITSUBISHI ELECTRIC SALES MALAYSIA SDN. BHD. Lot 11, Jalan 219, 46100 Petaling Jaya, Selangor Darul Ehsan, Malaysia	$\begin{aligned} & \text { Tel: }:+60-3-7626-5000 \\ & \text { Fax : +60-3-7658-3544 } \end{aligned}$
Indonesia	PT. MITSUBISHI ELECTRIC INDONESIA Gedung Jaya 11th Floor, JL. MH. Thamrin No.12, Jakarta Pusat 10340, Indonesia	$\begin{aligned} & \text { Tel: }+62-21-3192-6461 \\ & \text { Fax: +62-21-3192-3942 } \end{aligned}$
India	MITSUBISHI ELECTRIC INDIA PVT. LTD. Pune Branch Emerald House, EL-3, J Block, M.I.D.C., Bhosari, Pune-411026, Maharashtra, India	$\begin{aligned} & \text { Tel : +91-20-2710-2000 } \\ & \text { Fax : +91-20-2710-2100 } \end{aligned}$
Australia	MITSUBISHI ELECTRIC AUSTRALIA PTY. LTD. 348 Victoria Road, P.O. Box 11, Rydalmere, N.S.W 2116, Australia	Tel : +61-2-9684-7777 Fax : +61-2-9684-7245

[^0]: - Visualize entire plant data in real-time
 - Extensive preventative maintenance functions embedded into modules

[^1]: *2 For an upgrade tool, please consult your local Mitsubishi Electric representative.

[^2]: *2 For an upgrade tool, please consult your local Mitsubishi Electric representative.

[^3]: *3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

[^4]: *1 If the replaced cable is not long enough, use the RC100B extension cable (cable length: 10 m). Note that the RC100B is available with base units having a 10 m mark.

[^5]: *1 For an upgrade tool, please consult your local Mitsubishi Electric representative.

[^6]: *1 For an upgrade tool, please consult your local Mitsubishi Electric representative.

[^7]: *3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

[^8]: *3 For an upgrade tool, please consult your local Mitsubishi Electric representative.

[^9]: *1 For details, refer to the following.
 []MELSEC iQ-R MELSECNET/H Network Module User's Manual (Application)

[^10]: *1 In the MELSEC iQ-R series, this function name is "MC protocol communication (MELSEC communication protocol)".

[^11]: *1 In the MELSEC iQ-R series, this function name is "MC protocol communication (MELSEC communication protocol)".

[^12]: *1 In the QnASCPU, QCPU, and RCPU, the special relay and special register areas have the same number but different meanings. For details, refer to the manual for the CPU module used.

