三菱電機 コンデンシングユニット 2022年度版
四形 インバータスクロール
技術マニュアル
# 目次

安全のために必ず守ること

## 1. 使用範囲、使用条件

| 1 | 使用範囲 |
| 2 | 使用条件 |

## 2. 施工上、必ず守っていただきたい事項

| 1 | クロール圧縮機は逆転不可 |
| 2 | 壁面は異物に注意 |
| 3 | 自立真空引禁止 |
| 4 | 異種冷媒の使用禁止 |
| 5 | 冷却器ファン強制停止の禁止 |
| 6 | 冷媒充てん |

## 3. 各部の名称・付属品

| 1 | 各部の名称 |
| 2 | 付属品 |

## 4. ユニットの据付

| 1 | 据付場所の選定 |
| 2 | 据付スペース |
| 3 | 基礎工事 |
| 4 | 輸送用部材の取り外し |
| 5 | 防振工事 |
| 6 | アンカーボルト位置 |
| 7 | ユニット上部固定 |
| 8 | 降雪地域における積雪対策 |
| 9 | ロコンデンシングユニットと冷却器の高低差 |

## 5. 冷媒配管工事

| 1 | 一般事項 |
| 2 | ユニット下配管時の注意 |
| 3 | 吸入配管 |
| 4 | 出配管 |
| 5 | 断熱施工 |
| 6 | その他、配管工事上のご注意 |

## 6. 気密試験・真空引き乾燥

| 1 | 気密試験 |
| 2 | 真空引き乾燥 |

## 7. 冷媒充てん時のお願い

| 1 | 冷媒の充てん |
| 2 | 冷媒充てん量 |
| 3 | 許容冷媒充てん量 |
総合電気配線工事

1. 配線作業時の注意
2. 配線容量
3. 電気特性
4. 逆相コンデンサの設置上の注意
5. 運転電流
6. 外部への信号出力
7. 電気配線図

コントローラと制御

1. 各部の配置
2. メイン基板
3. 応急運転基板
4. インバータ基板
5. ゲートアンプ基板（ド基板）
6. 運転スイッチ
7. 運転モードスイッチ
8. インシナル処理
9. 制御項目一覧
10. 異常コード一覧
11. 目標蒸発温度設定
12. ファンコントロール制御
13. 油戻し制御
14. 液バック保護制御
15. 油圧電
16. パックアップ制御
17. 検知項目別制御内容表
18. ディップスイッチ設定（メイン基板）
19. ディップスイッチによる表示機能
20. ディップスイッチ設定内容詳細

試運転・サービス時のお願い

1. 試運転時の確認事項
2. コントローラ
3. 低圧圧力制御の設定方法
4. ショートサイクル運転の防止
5. サービス時のポンプダウン方法について

製品の様子がおかしい時

1. 故障判定
2. 異常コード別チェック要領
3. 異常コード別対処方法一覧表
4. 電源回路チェック要領

主要電気回路部品の故障判定方法

1. 圧力センサ
2. 温度センサ
3. 計測器
4. インバータ
故障した場合の処置
1. 故障時の注意
2. 压縮機交換要領

お客様への説明
1. 保守のおすすめ
2. 連続液バック防止のご注意
3. 運転状態の定期的な確認
4. 凝縮器フィンの清掃
5. パネルの清掃
6. 冷媒回路部品の点検

ユニットの保証条件
1. 無償保証期間及び範囲
2. 保証できない範囲

警報装置設置のお願い

冷媒回路

仕様表

製品運搬と開梱時のお願い
安全のために必ず守ること

警告
誤った取扱いをしたときに、死亡や重傷等の重大な結果に結びつく可能性が大きいものです。

注意
誤った取扱いをしたときに、状況によっては重大な結果に結びつく可能性があるものです。

取付けは、工事説明書にしたがって確実に行う。
- 取付けに不備があると、冷媒漏れや火災・感電・水漏れの原因になります。

電気工事者によるD種 第3種接地工事を行う。
- D種 第3種接地工事が不完全な場合は感電事故の原因になります。

配線は、所定の配線を使用して確実に接続し、端子台接続部に接続電線の外力が、伝わらないように確実に固定する。
- 接続や固定に不備があると発熱・火災の原因になります。

台風等の強風、地震に備え、所定の取付工事を行う。
- 取付工事に不備があると、転倒等による事故の原因になることがあります。

安全装置・保護装置の設定値は変更しない。
- 設定値を変えると、ユニットの破裂・発火の原因になります。

気密試験は確実に行う。
- 冷媒が漏れると、酸素欠乏の原因になります。

冷媒漏れ時の限界濃度対策は確実に行う。
- 屋内や冷蔵庫に接付する場合は万一冷媒が漏れても限界濃度を超えない対策が必要です。そのような場所に入る場合は、換気を十分に確認してください。換気を十分に確認してください。換気を十分に確認してください。換気を十分に確認してください。
- 冷蔵庫内の冷媒漏れ対策については、弊社代理店と相談してご接付してください。万一冷媒が漏れしていても限界濃度を超えると酸素欠乏の原因になります。
- ガス漏れ検知器の設置をおおすすめします。

取付けは、質量に十分に耐える所に確実に行う。
- 端接点の接続が不十分な場合にケガの原因になります。

電気工事は「電気設備に関する技術基準」・「内線規程」を遵守し、工事説明書に従って施工し、必ず専用回路を使用する。
- 電源回路容量不足や施工不備があると、端子接続部の発熱・火災や感電の原因になります。

ユニットの端子台カバー パネル を確実に取付ける。
- 端子台カバー パネル の取付けに不備があると、端子接続部の発熱・火災や感電の原因になります。

冷凍サイクル内に指定冷媒以外の冷媒や空気などを混入させない。
- 混入と冷凍サイクルが異常高温となり破裂・ケガの原因になります。

冷凍回路サービス時は、換気を十分に行う。
- 作業中に冷媒ガスが漏れた場合は換気してください。冷媒ガスが火気に触れると、有毒ガスが発生する原因になります。

冷媒ガスの漏れチェックは確実に行う。
- 設置工事完了後、冷媒ガスが漏れていないことを確認してください。冷媒ガスが機械室内や冷蔵庫内に漏れ火気に触れると、有毒ガスが発生する原因になります。

保護装置を短絡して、強制的な運転をさせない。
- 短絡して強制的な運転を行うと、ユニットの火災爆発の原因になることがあります。
⚠️ 警告

水のかかるおそれのある場所には据付けない。

- 水がかかると、発火や感電の原因になります。
  （屋外設置形は除きます。）

ユニットに手を触れないように安全カバーを取付ける。

- 手を触れるとケガの原因になります。
  （屋外設置形は除きます。）

冷媒回路内にガスを封入した状態で加熱しない。

- 冷媒や出荷時の封入ガスが入った状態で加熱すると、破裂・爆発の原因になります。

⚠️ 注意

漏電遮断器を取付ける。

- 漏電遮断器が付いていないと、感電・発火・発火の原因になることがあります。漏電遮断器は、ユニット・台につき1個設置してください。

ヒューズ交換時は、指定容量のヒューズを使用する。

- 針金や銅線を使用すると火災の原因になることがあります。

排水工事を確実に行う。

- 雨水・結露水などが屋内に侵入し、周囲を濡らす原因になることがあります。

可燃性ガスの漏れおそれのある場所に据付けない。

- 万が一ガスが漏れてユニットの周囲にたまると、発火の原因になることがあります。

換気を行う。

- 万一冷媒が漏れると、酸素欠乏の原因になることがあります。

サービスバルブ操作時は、冷媒噴出に注意する。

- サービスバルブ操作時は、冷媒が噴出します。この時、冷媒を浴びて凍傷をおこしたり、裸火に冷媒ガスが触れると、有毒ガス発生の原因になります。

仕様の範囲内で冷凍サイクルを製作する。

- 仕様を逸脱して冷凍サイクルを作ると、破裂・発火・発火・漏電の原因になることがあります。

ファン及びフィンに直接手で触れらない。

- 手を触れるとケガの原因になります。（水冷形は除きます。）

揚送用止具は確実に取外す。

- 取外しを行わないと冷媒漏れによる酸欠の原因になることがあります。

ユニット内の冷媒は必ず回収する。

- 冷媒は必ず回収して、再利用するか、処理業者に依頼して廃棄してください。大気に放出すると環境汚染の原因になります。

ユーティットの廃棄は専門業者に依頼する。

- ユニット内に油や冷媒を充填した状態で廃棄すると火災・爆発・環境汚染の原因になることがあります。
１．使用範囲
本ユニットの使用範囲は表の通りです。

表  ユニットの使用範囲

<table>
<thead>
<tr>
<th>形名</th>
<th>冷媒</th>
<th>圧縮機</th>
<th>冷凍機油</th>
<th>蒸発温度</th>
<th>吸入圧力</th>
<th>凝縮温度</th>
<th>吐出圧力</th>
<th>吐出ガス温度</th>
<th>油温度</th>
<th>吸収ガス過熱度</th>
<th>周囲温度</th>
<th>電源電圧</th>
<th>電圧不平衡率</th>
<th>接続配管長さ</th>
<th>(液・吸入配管)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

（□□）据付スペースによっては、・□〜□がとなる場合があります。□ユニットの据付を参照ください。（□□）本書記載の配管工事等施工条件を満たし、装置への確実な油戻りが保証されること、及び冷媒過充填□とならない場合の数値です。（許容冷媒量は□□許容冷媒充填量記載）□
（□□）ファン遅延方式のクーラと組み合わせる場合、ファン遅延時間は□分以内としてください。（□□）

２．使用条件
次の環境では使用しないでください。

□他の熱源から直接ふく射熱を受ける所。
□ユニットから発生する騒音が隣家に迷惑になる所。
□本体の重量に充分耐えられない強度のない所。
□本工事説明書記載のサービススペースが充分確保できない所。（□□据付スペース参照）
□可燃性ガスの発生・流入・滞留・漏れのおそれのある所。
□酸性の溶液や特殊なスプレーの油を頻繁に使用する所。
□油・蒸気・硫化ガスの多い特殊環境。降雪の排気口の近くも含まれます。□
□降雨地域で、本工事説明書記載の防雪対策が施されない所。（□□降雨地域における積雪対策参照）
□車両や船舶のように常に振動している所。
□特殊環境（温泉・化学薬品を使用する場所）□
□屋内設置機器（リモート形の圧縮機ユニット等）は、雨水や直射日光の当らない場所に設置してください。
□法定冷凍トンについて
本ユニットは合算して法定冷凍トン□□トン以上になる冷凍装置、又は付属冷凍としては使用できませんのでご注意ください。
施工上、必ず守っていただきたい事項

ユニットには、スクリュー圧縮機を搭載しています。レシプロ圧縮機搭載ユニットとご使用方法が異なるところがありますのでご注意ください。誤った使い方は圧縮機を損傷することになりますので下記注意事項を遵守して下さい。

1 スクリュー圧縮機は旋回不可
スクリュー圧縮機は、逆回転させると損傷します。
本ユニットには逆回転防止機能がついています。逆回転電源の場合、運転スイッチ（□ □）を（□）しても圧縮機は始動せず、エラーコード表示をデジタル表示（制御箱内コントローラ上のデジタル表示部）します。この時は、電源端子台に接続した電源配線（現地配線側）の内、□本を入れ替えてください。（図 ①②）

次の事項は絶対にしないでください。

エラーコード□□□□を表示している時電磁開閉器の手動投入ボタンを押して圧縮機を強制運転しないでください。

図 ② 強制運転の禁止

電磁開閉器の2次側配線の相は絶対に変更しないでください。

図 ②③ 次側配線変更の禁止

2 スクリュー圧縮機は異物に注意
圧縮機は、精密な部分で構成されているため、配管施工工事時の銅粉・砂・酸化スケール等の異物の混入などしないよう十分ご注意ください。

3 自力真空引禁止
自力で真空引きを行ったり、吸入操作弁を閉めたままで強制運転（電磁開閉器の手動投入ボタンを押すなど）をしないでください。（真空試験・真空引きの項を参照ください。）

4 異種冷媒の使用禁止
本ユニットは、R□□□専用機なので、□□□□等の異種冷媒は使用しないでください。

5 冷却器ファン強制停止の禁止
デフロスト直後の短時間は除いて、冷却器のファンを停止したままでユニットを運転させないでください。
冷却器のファンを停止する場合は、必ず液電磁弁を閉にしてユニットも停止させてください。

6 冷媒充てん
□冷媒充てんはまずまずにはじめて高圧側出口操作弁のサービスポートから行ってください。
□充てん量は許容封入冷媒量を越えないようにしてください。（冷媒充てん時のお願いを参照ください。）
1. 各部の名称

図[図] 各部の名称

2. 付属品

この製品には、下記の部品が付属されていますので、ご確認ください。

<table>
<thead>
<tr>
<th>部品</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヒューズ（A） x2</td>
<td>本</td>
</tr>
<tr>
<td>ピーチジョイント</td>
<td>本</td>
</tr>
<tr>
<td>制御箱内</td>
<td>本</td>
</tr>
<tr>
<td>防音材</td>
<td>個</td>
</tr>
</tbody>
</table>

図[図] 付属品
ユニットの据付

据付にあたり、①使用範囲・使用条件の項（②）を厳守してください。

１．据付場所の選定
① 凝縮器吸込空気が -20〜35℃ の範囲で、かつ通風が良好な場所を選んでください。
② 凝縮器はできるだけ直射日光の当たりなさない場所を選んで設置してください。どうしても日光が当たる場合は日除け等を考慮願います。
③ 運転操作・及びサービスが容易に行えるようサービススペースが十分確保できる場所を選んでください。
④ 騒音や振動の影響が少ない場所を選んでください。
⑤ 冷凍装置（ユニット、電気機器）の近くには可燃物を絶対に置かないでください。（発泡スチロール、ダンボールなど）
⑥ ユニットを据付ける場所や機械室には一般の人があえ容易に出入りしないような処置をしてください。

２．据付スペース
機器の据付には、保守、メンテナンスのためのサービススペースと、機器の放熱、凝縮熱の放熱のために一定の空間が必要です。必要な空間が確保できない場合、冷凍能力が低下したり、最悪運転に支障をきたします。

＜サービススペース＞
サービススペースには、設置作業およびメンテナンスのために図中の寸法が必要になります。

図Ⅲ サービススペース

強風場所設置時のお願い
本製品は、吹出ガイドを標準装備し、向かい風に対する風量確保を図っています。
しかし、据付場所が、屋上や周囲に建物などがない場合で、強い風が直接製品に吹付けることが想定される時には、製品の吹出口に強い風が当たらないようにしてください。
強い風が製品の吹出口に直接吹付けると必要な風量が確保できなくなり運転に支障をきたします。

図 例
近くに壁などがある場合には壁面に吹出口が向くようにする。この時壁面までの距離は 50〜100cm にする。

図 例
吹出方向

図 例

強風
<挿付スペースの例>
挿付スペースによっては、使用周囲温度の上限が○○○より低くなる場合があります。
下記例に使用周囲温度上限を記載します。横連結設置は○ブロックあたり○台までです。
（図中○、●は変化寸法を示す）（吹出方向は上向きの例を示す）

使用周囲温度の上限が○○○の設置例

図Ⅲ  背面と正面に障害物がある場合
（側面、上方は開放）

図Ⅳ  横連結で障害物がない場合

図Ⅴ  横連結で正面に障害物がある場合
（背面、側面、上方は開放）

図Ⅵ  Ⅵ段積み設置の場合
（正面、側面、上方は開放）

吹出ガイドによる吹出方向は、上（出荷時）
左、右が選択できます。
現地の状態に合った方向で取付けて下さい。

注：下向きは禁止です。

図Ⅶ  Ⅶ台並列設置の場合
（側面、上方は開放）
使用周囲温度の上限が図の設置例
（単位：℃）

図 図 図 図 図 図 図

背面と上方に障害物がある場合
（正面、側面は開放）

背面と側面に障害物がある場合
（正面、上方は開放）

横連結で背面に障害物がある場合
（正面、側面、上方は開放）

横連結で背面と正面に障害物がある場合
（側面、上方は開放）

基礎工事
ユニットの基礎は、コンクリート又は鉄骨アングール等で構成し、水平で強固としてください。
基礎が平坦でない場合や弱い場合は異常振動や異常騒音の発生原因となりますのでご注意ください。
強固な基礎の目安として、製品の約3倍以上の質量を有する基礎としてください。もしくは、強固な構造物と直接連結してください。
製品が水平となるようにしてください。（傾き勾配5%以内）

輸送用部材の取り外し
据付後、輸送為の保護部材、梱包部材は確実に取り外して、処分してください。
部材をつけたまま運転すると、事故になる可能性があります。
5. 防振工事

据付条件によっては、振動が揺動部から伝播し、床や壁面から、騒音や振動が発生する場合がありますので、必要に応じ十分な防振工事（防振パッド、防振架台など）を行ってください。（図○○○参照

図○○○ 防振パッド（例）

M12の基礎ボルトでユニットの据付足を4カ所強固に固定してください。（基礎ボルト、座金、ナット、防振パッドは現場手配です。）

図○○○ コンクリート基礎例

6. アンカーボルト位置

ユニットが地震や強風などで倒れないように、ボルトで強固に固定してください。据付寸法等は外形図を参照ください。（M12アンカーボルト：現場手配）

1. 据付ボルトは必ず使用し、基礎へ確実に固定してください。
2. 必ず4カ所固定してください。

7. ユニット上部固定

強風対策などで、ユニット据付足を固定した上で、さらに上部固定を必要とする場合、天面パネルの側面側に△ヶ所の固定穴がありますのでご利用ください。

なお、ご使用可能なネジは、セルフタッピングネジ○●●以下です。

図○○○ 天面パネル固定穴
考. 降雪地域における積雪対策
降雪地域で使用する場合は、室外ユニット全体を架台（別売 型名□□□□）上に取付けてください。
この場合は、地面からの高さは□□□□mm（= 架台高さ□□□□mm + ユニット足□□□□mm）になります。
□□□□mmを超える積雪対策は、現地手配の架台が必要となります。

図 □□□ 架台の取付け例

考. コンデンシングユニットと冷却器の高低差
冷却器をユニットより上方に設置する場合、高低差は5m以内としてください。高低差が大きいと液冷媒のヘッド差による圧力降下のため、フラッシュガスが発生する場合があります。

冷却器をユニットより下方に設置する場合、高低差は□□□□mm以内としてください。高低差が大きいと、圧縮機への油戻りが悪くなり故障の原因となります。

図 □□□ 冷却器が上の例

図 □□□ 冷却器が下の例
冷媒配管工事

警告
火気使用中に冷媒ガスを漏らさないように注意する。
冷媒ガスがガスコンロ等の火に触れると分解して、有害ガスを発生させガス中毒の原因になります。溶接作業は密閉された部屋で実施しないでください。また冷媒配管工事完了後、ガス漏れ検査を実施してください。

1. 一般事項
配管工事の設計・施工の良否が、冷凍装置の性能や寿命及びトラブル発生に大きな影響を与えますので、「高圧ガス安全法」及び「冷凍保安規則の機能性基準の運用について」を、以下に示す項目に従って設計・施工してください。
注1）工場出荷時、ユニット本体には乾燥室素ガスを内圧で封入しています。水分や異物の混入を防止するため、配管接続直前までは、開放しないでください。
注2）本体を高所に設置される場合、試運転時やサービス時に冷媒ポンプ等重量物の運搬を考慮した搬入路の確保や、配管管中、最もサービスしやすい位置にサービスバルブを設ける等の配慮した施工を行ってください。

2. ユニット下配管時の注意
口配管の取出しは、ユニット下部で行います。方向は、前・後・左・右下配管の方向です。
口配管は、配線、パネル、圧縮機などと接触しないように施工してください。
口ユニット下部からユニット吸入ボールバルブまでの断熱施工は、パイプカバー（発泡ポリウレタンなど：シート）を使用してください。

3. 吸入配管
口配管サイズは、冷凍機接続口の銅パイプ径に合わせてください。
口ランクアップ、ランクダウン採用の場合は、油汚れと圧力損失を十分考慮してください。
口吸入配管は必ず断熱を施してください。目安としては表を参考にしてください。また吸入管と液管は抱き合わせ配管しないでください。
口複数台の冷却器を使用するとき
互いに他の冷却器の膨張弁の影響を受けないように、又停止中の冷却器に油が流れこまないための逆トラップを設けてください。

4. 液配管
口液配管サイズは、通常は配管接続口の出口径に合わせてください。
口複数台の冷却器を使用するとき
冷媒が各々の冷却器に均等に流れるように各配管回路の圧力損失を均等にしてください。また、配管の下から分岐してから使用すると、液冷媒が分岐回路に十分供給されず冷却不良になることがあります。
口高温場所を通るとき
液管が他の熱源の影響を受け、加熱されることで、フラッシュガスが発生し、不冷トラブルの原因になります。液管は、できるだけ温度の低い部分を通してください。万一高温場所を通る場合は、液管を断熱してください。
口吐出配管と液配管の距離
吐出配管と液配管との間隔は、吐出配管の熱影響を避けるため、一定以上離してください。
nihon shikou

断熱施工

【安全施工】断熱施工は必ず断熱を施してください。目安としては表の断熱材の厚さを参考にしてください。

<table>
<thead>
<tr>
<th>用途</th>
<th>ピット配管</th>
<th>天井配管</th>
</tr>
</thead>
<tbody>
<tr>
<td>冷蔵</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>冷凍</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

断熱材としては、発泡ポリウレタン・スチロール材を使用してください。

(ユニット下部からユニット吸込ホールループまでの断熱施工は、パイプカバー（発泡ポリウレタンなど：0.000）を使用してください。

その他、配管工事上のご注意

配管内部にごみ、水分が入らないよう十分に洗浄された熱脱酸鋼管を使用してください。
また、ロウ付時には、酸化スケールが生成しないように、乾燥室素ガス等の不活性ガスを配管に通しながら行ってください。

ロウ付後もロウ付部の温度が
以下になるまで流し続けてください。（ロウ付部を巻き込む心配があります。）

液電磁弁は膨張弁先に取付けてください。室外ユニット付近に取付けると、ポンプダウン量の不足をきたして高圧カットするおそれがあります。

水平配管は必ず下り勾配（1000以上）となるようにしてください。

フレア接続面には傷をつけないようにご注意ください。

配管は適当な間隔を置いて支持するとともに、温度変化による配管伸縮を吸収させるための曲管、迂回管（水平ループ）などを設けてください。

吸入配管には、ストレーナ詰りチェック用のチェックジョイント（付属品）を取り付けてください。

チェック方法

吸入操作弁のサポートとチェックジョイントの圧力差が0.000以上の場合、詰りと考えられますのでストレーナを交換又は清掃してください。

図（）図

図（）図
１．気密試験
冷凍サイクルが完成したら、配管に断熱を施す前に「高圧ガス保安法」に基づき、装置全体の気密試験を実施してください。
気密試験圧力は、設計圧力又は許容圧力のいずれか低い圧力としなければなりません。
本機の設計圧力は、表⑳の通りです。

<table>
<thead>
<tr>
<th></th>
<th>高圧側</th>
<th>低圧側</th>
</tr>
</thead>
<tbody>
<tr>
<td>設計圧力</td>
<td>0.101</td>
<td>0.04</td>
</tr>
</tbody>
</table>

２．真空引き乾燥
①装置内の真空引きは必ず真空ポンプを用いてください。尚、自力真空引きは絶対に行わないでください。
②真空引きは、-0.101Paまで引いてから、更に数時間行ってください。
③本機は、コンストローラによる低圧デジタル表示を採用しております。真空引き時、本機に通電していない場合、コンストローラは低圧を表示します。マニホールドゲージをご使用ください。
④真空引きはユニットの各操作弁のサービスポートより行ってください。（図⑳を参照してください）

注：吸入ボールバルブの操作は図⑳のように行ってください。
冷媒充てん時のお願い

1. 冷媒の充てん

真空引乾燥終了 □
冷媒ポンプの質量測定 □

冷媒を液状で液出口操作弁の開閉サポートより封入する □
冷媒ポンプの質量測定 □

*注）試運転時、またはサービス後にはじめてユニットを運転させるとき、低圧圧力が未満で運転スイッチを『停止』にするとデジタル表示部に『低圧圧力未満』が表示される場合があります。その場合、低圧圧力を上昇させるために、運転スイッチを『運転』にすると『停止』に『運転』にすると『低圧圧力未満』が表示されます。低圧圧力がM以下で異常コード「0000」が表示される場合は電源が逆相・欠相であるか、電気回路の異常が考えられます。（詳細はお問い合わせください。）

図 □□ 冷媒の充てん

封入した冷媒量および冷媒封入業者名を、本製品に貼付している冷媒充入ラベルに、容易に消えない方法で記載してください。
フロン回収破壊法の施工に伴い、記載を怠った業者は法律に従って罰せられます。

2. 冷媒充てん量

冷媒充てん量が少な過ぎたり、ガス漏れにより冷媒ガスが不足すると、低圧圧力が下がり冷えや油戻りが悪くなります。また過熱運転にもなります。

最小必要冷媒量は、庫内温度を所定の温度まで下げ、凝縮温度をできるだけ下げる状態（定常状態）で、液管サポートガス（ガス）が消える冷媒量です。実際の充填では運転時の過熱現象や外気温度の変化等を考慮してさらに下表程度の冷媒を追加しておく必要があります。

| 冷媒不足 □ | 冷媒充てん良好 □ |

3. 許容冷媒充てん量

最大でも許容冷媒充てん量を超えないようにしてください。
過充填されると、高圧カット・始動不良等のトラブルが発生するおそれがあります。

表 □□ 許容冷媒充てん量（延長配管 □□□ の場合）

| 許容冷媒充てん量 □ | □□□ |

□□
電気配線工事

1 配線作業時の注意

○○種（第3種）接点工事を行ってください。
○配電盤等を設置してください。詳しくは電気設備技術基準をご覧ください。
○配線作業は、業者等で手・腕が露ностиしないようお願いいたします。
○配線類は過熱防止のため、配管等の断熱材を通さないでください。
○配線施工は必ず内線規定に基づき行ってください。また、吸入口を露出しないようおそれのある箇所での配線は避けてください。

2 配線容量

本機の許容電圧は図2の通りです。
配線容量は、電気設備技術基準及び内線規程に従うほか、
この許容電圧の範囲に入るよう、次の電気特性を参考の上、
決定してください。

注）始動時の電圧は瞬間のため、テスターなどで測定できませんが、始動時の電圧降下電圧降下Bは、停止時と運転時の電圧の差電圧降下Bの約5倍であり、始動時の電圧の概略値は、停止時の電圧から、始動時の電圧降下を差し引いて求めることができます。（商用運転時）
（電圧降下A）5V（電圧降下B）

3 電気特性

表3 電気特性

<table>
<thead>
<tr>
<th>項目</th>
<th>形名</th>
<th>三相</th>
</tr>
</thead>
<tbody>
<tr>
<td>電気</td>
<td>源</td>
<td></td>
</tr>
<tr>
<td>ユース</td>
<td>消費電力</td>
<td></td>
</tr>
<tr>
<td>ユース</td>
<td>運転電流</td>
<td></td>
</tr>
<tr>
<td>ツール</td>
<td>始動電流</td>
<td></td>
</tr>
<tr>
<td>ツール</td>
<td>吐出運転時</td>
<td></td>
</tr>
<tr>
<td>電流機器</td>
<td>定格出力</td>
<td></td>
</tr>
<tr>
<td>電流機器</td>
<td>回転数</td>
<td></td>
</tr>
<tr>
<td>電流機器</td>
<td>回転数</td>
<td></td>
</tr>
<tr>
<td>送風機</td>
<td>電動機定格出力</td>
<td></td>
</tr>
<tr>
<td>送風機</td>
<td>電動機定格出力</td>
<td></td>
</tr>
<tr>
<td>クランクケースピータ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電気</td>
<td>線材大さ</td>
<td></td>
</tr>
<tr>
<td>線材大さ</td>
<td>定格電流</td>
<td></td>
</tr>
</tbody>
</table>

*消費電力、運転電流は、凝縮器吸入空気温度、蒸発温度、吸入ガス温度、サブクール、運転周波数の値です。
**< >内の数字は、電圧降下Bの時の最大こう長を示します。
配線要領は内線規模<以上の地点>により行ってください。
４ 進相コンデンサの設置上の注意
本機はインバータにより圧縮機を運転しますので、進相コンデンサは使用しないでください。

５ 運転電流
運転電流値の目安は表Ⅲの通りです。なお、運転初期（プルダウン時）には通常電流より大きな電流が流れます。

表Ⅲ 運転電流
電流値  | 周囲温度  |
---|---|
| | | |
- | | | |
- | | | |
- | | | |

６ 外部への信号出力
制御箱の端子台より運転信号を取り出すことができます。

警報信号
端子台Ⅲ番、Ⅳ番間より警報信号を取り出すことができます。
冷凍機が異常停止した時に、警報信号を出力します。

商用運転信号
端子台Ⅲ番、Ⅳ番間より商用運転信号を取り出すことができます。
圧縮機が自動または手動により商用電源にて運転している場合、信号を出力します。

圧縮機運転信号
端子台Ⅲ番、Ⅳ番間より圧縮機の運転信号を取り出すことができます。
圧縮機が運転している時は信号を出力します。圧縮機が停止している時は信号を出力しません。

冷凍機運転信号
端子台Ⅲ番、Ⅳ番間より冷凍機の運転信号を取り出すことができます。
冷凍機が正常に運転している時（圧縮機が低圧停止により停止している時も含む）は信号を出力します。
冷凍機が異常停止すると信号は出力しません。
リモコンボックス一般の接続（例）

一般的な接続（例）

記号

名称

ELB 激電圧器
PL1 表示灯（運転・モジュール）
PL2 表示灯（異常・アラーム）
PL3 表示灯（除霜・オレンジ）
SW2 電圧停止・運転開始用タコツ
SW3 リセット用タコツ
X1 給電源用電圧器
2D ディスプレイ用電圧器
21R 電磁弁用電圧器
23R 溫度調節器用電圧器
26H 溫度調節器用電圧器
88H 電磁接触器用電圧器

注：• 線は接続配線を示す。複数の矢印は、圧力温度が上昇または圧力差が増大した場合の接点の動作方向を示す。
圧力差が適切な実装を防ぐために、リモコンボックス内に内蔵された接点の動作方向を示します。
圧力差が適切な実装を防ぐために、リモコンボックス内に内蔵された接点の動作方向を示します。

電熱器0.05〜0.10用の電熱洗浄器は、リモコンボックス内に接続可能です。
Ⅲ．コントローラと制御

各部の配置
インバータ基板
ゲートアンプ基板（G/A基板）

運転スイッチ
運転：ユニットを運転させます。
停止：ユニットを停止させます。

運転スイッチは「停止」にしていても、基板各部や端子台には電圧がかかっていますのでご注意ください。
また、ユニットの元電源をOFFにしても、数分間はコンデンサに電荷が残っています。
インバータ基板のチャージランプ（Yellow）が消灯するまで、サービス等の作業は行わないでください。

運転モードスイッチ
運転モードの切り替えは、必ず運転スイッチを「停止」にして、ユニットの停止を確認してから行ってください。

インバータ運転：圧縮機をインバータ電源にて運転します。
商用運転：圧縮機を商用電源にて運転します。商用運転中は低圧表示（デジタル表示）が点滅します。

商用運転はサービス時やインバータ運転異常時のバックアップとしてご使用ください。
商用運転での長期間運転は行わないでください。

イニシャル処理
ユニットに電源を投入してからメイン基板のデジタル表示部に低圧圧力が表示されるまで数秒かかります。
しばらくしてもデジタル表示部に低圧圧力が表示されない場合、誤配線が考えられますので、配線のチェックをお願いします。

イニシャル処理時の特長
初期設定（初期からカチカチ音がしますが異常ではありません。）
基板の初期設定（デジタル表示部に初期アドレスが数秒間表示されます。）
### 制御項目一覧

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>内容</th>
<th>1分運転</th>
<th>2分運転</th>
<th>3分運転</th>
<th>4分運転</th>
<th>5分運転</th>
<th>6分運転</th>
<th>7分運転</th>
<th>8分運転</th>
<th>9分運転</th>
<th>10分運転</th>
<th>11分運転</th>
<th>12分運転</th>
<th>13分運転</th>
<th>14分運転</th>
<th>15分運転</th>
<th>警告運転</th>
<th>警告運転</th>
</tr>
</thead>
<tbody>
<tr>
<td>運転時の制御欄</td>
<td>オフ</td>
<td>機関が停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>機関の停止 carries</td>
<td>機関が停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>運転中キャリビレータを</td>
<td>運転中キャリビレータを停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>エンジンのキャリビレータ</td>
<td>エンジンのキャリビレータを停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>低圧電流発電機</td>
<td>低圧電流発電機を停止します。</td>
<td>☐</td>
</tr>
</tbody>
</table>
異常コード一覧

<table>
<thead>
<tr>
<th>異常コード</th>
<th>内容</th>
<th>異常コード</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>機械式低圧圧力開閉器動作異常</td>
<td>0000</td>
<td>機械式回路異常</td>
</tr>
<tr>
<td>0000</td>
<td>シール通信異常</td>
<td>0000</td>
<td>機械式回路異常</td>
</tr>
<tr>
<td>0000</td>
<td>口出温度異常</td>
<td>0000</td>
<td>高圧圧力異常</td>
</tr>
<tr>
<td>0000</td>
<td>低圧圧力温度異常</td>
<td>0000</td>
<td>機械式回路異常</td>
</tr>
</tbody>
</table>

目標蒸発温度設定

目標とする蒸発温度相当の低圧圧力になるように、自動的に圧縮機の運転を制御します。
工場出荷設定では、目標蒸発温度が0.0℃となるように設定されています。

目標蒸発温度の設定方法

ディップスイッチ0.0℃が0.0℃となっていることを確認してください。
（工場出荷時0.0℃は0.0℃となっています。0.0℃となっている場合は0.0℃にして下さい。）

目標蒸発温度の設定例

<table>
<thead>
<tr>
<th>目標蒸発温度</th>
<th>ロータリスイッチ設置</th>
<th>デジタル表示</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
</tbody>
</table>

目標蒸発温度の設定範囲は0.0℃～0.0℃である。ロータリスイッチの設定範囲は0.0℃～0.0℃である。設定範囲外に設定すると、自動的に0.0℃を目標とします。
ロータリスイッチの操作後、0.0℃は目標蒸発温度がデジタル表示されます。

他のディップスイッチによるサービス機能を設定しない場合、ディップスイッチの設定は0.0℃までに作成がありません。

目標蒸発温度設定後、目標低圧圧力、低圧カット切換、低圧カット入換は自動計算され設定されます。

目標蒸発温度各設定値（自動計算）

<table>
<thead>
<tr>
<th>目標蒸発温度設定値</th>
<th>目標低圧</th>
<th>低圧カット</th>
<th>低圧カット入換</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
</tbody>
</table>

ショートサイクル運転防止のため、圧縮機停止後から0.0℃間で低圧圧力が入換となっても起動しません。

工場出荷設定に2.0℃以上の低圧圧力は圧縮機吸入配管部の圧縮センサーにより検知しています。工場出荷設定に2.0℃以上の低圧圧力が入換となっても起動しません。
サービス時のポンプダウン方法について

通常の運転制御では、低圧側を○○○○までポンプダウンさせることはできません。
負荷側のサービスなどで、低圧側を○○○○までポンプダウンさせる場合は○○○○○の方法を参照してください。

○○ファンコントロール制御

外気温度サーミスタ□□□□□高圧センサ□□□□□□低圧センサ□□□□□□に応じて、送風機出力を制御します。
工場出荷設定では
目標凝縮温度 = 外気温度□□(・)となるように設定されています。（外気温度が□□基準）
（外気温度に応じて目標凝縮温度は補正されます。）
通常はそのままご使用ください。
ディップスイッチ□□□□□とロータリスイッチにより、目標凝縮温度を変更することが出来ます。
<目標凝縮温度変更方法> □
網 ディップスイッチ□□□□を□□にして、目標蒸発温度を□□に記憶させてください。
詳細は目標蒸発温度設定の項による。

ディップスイッチ□□□□□□を□□にしてください。

下表の例に従いロータリスイッチにより目標凝縮温度を設定してください。

<table>
<thead>
<tr>
<th>目標凝縮温度（□）</th>
<th>ロータリスイッチ設定</th>
<th>デジタル表示</th>
</tr>
</thead>
<tbody>
<tr>
<td>外気温度□□□□</td>
<td>□□□□□□</td>
<td>□□□□□□</td>
</tr>
<tr>
<td>外気温度□□□□</td>
<td>□□□□□□</td>
<td>□□□□□□</td>
</tr>
<tr>
<td>外気温度□□□□</td>
<td>□□□□□□</td>
<td>□□□□□□</td>
</tr>
<tr>
<td>外気温度□□□□□(工事出荷設定)</td>
<td>□□□□□□</td>
<td>□□□□□□</td>
</tr>
</tbody>
</table>

ディップスイッチ□□□□□□□□□□にすると設定値を確定し、□□□□□□に記憶します。
目標凝縮温度の設定範囲は外気温度□□～外気温度□□□□□□□□を刻みです。（ロータリスイッチの設定範囲は□□～□□です
設定範囲外に設定されると、自動的に外気温度□□□□□□□□を目標とします。
目標凝縮温度を低くすると□□□□回転数が上がり、省エネ運転になります。（騒音値は上がります。）
目標凝縮温度を高くすると□□□□回転数が下がり、低騒音運転になります。（省エネ性能は低下します。）
油押しし制御

- 30秒以下の運転が積算3時間以上になると、油押しし運転を行います。
- 30秒以上の運転を10分以上連続運転した場合、積算時間をクリアします。

圧縮機を0分間停止します。

圧縮機起動前に低圧バッテリー電磁弁を0秒間開きます。

圧縮機を03分以上で運転させます。

- 80秒以上の運転を10分以上行なうと、油押しし制御を終了し、通常制御に戻ります。

液パック保護制御

圧縮機運転中に下記条件の全てを10分連続で検知した場合、液パック保護を行います。

- 摂入気温度が現在の低圧圧力以上の鮹和温度が高い場合。
- 摂入気温度が現在の低圧圧力以下の湿和温度が高い場合。
- 摂入気温度が現在の低圧圧力以下の湿和温度が低い場合。

圧縮機は10分間停止します。

圧縮機が停止し、10秒後に送給通電を開始します。

圧縮機が停止した後、圧縮機再起動させ、通常制御に戻ります。

拘束通電

液パックや導込を検知した場合、圧縮機エタに単相電圧を印加することにより、エタを過熱し、

液冷媒を蒸発させます。

拘束通電中は圧縮機より電気音がしますが異常ではありません。

バックアップ制御

本機はインパータ異常時のバックアップ機能として商用運転を備えています。

インパータ運転中に異常を検知した場合、自動的に商用電源にて運転します。

- 1分間異常を検知することなく、低圧カットにて圧縮機が停止した場合、次の起動からは自動的にインパータ運転に復帰します。

インパータ運転が不可能で、自動で商用運転にも切り替えられない場合、手動にて商用電源による運転が可能です。

- 運転モードスイッチの頂参照
- 手動で商用運転も可能な場合、コネクタの差換えにより応急運転が可能です。応急運転方法

- 準備: メイン基板のデジタル表示が正常なため確認してください。
- 低圧圧力や異常コード以外の表示を示していない場合や何も表示していない場合は、インパータ回路の異常が考えられますので、ユーニットの元電源を0秒より、電源端子台から交流ノイズフィルタからの配線を取り外してください。
- 電気配線図を参照してください。
- ユニットの元電源を0秒にして、10分間はコンデンサに電荷が残っています。インパータ電源のチャージランプが消灯するまで作業を行わないでください。

応急運転時は、電磁開閉器の過電流継電器に0秒を必ず手動復帰に切り替えてください。

- 運転スイッチを「停止」にした後、ユーニットの元電源を0秒してください。
- メイン基板の0秒コネクタを抜き、応急運転基板の0秒に差し込んでください。
- メイン基板の0秒コネクタを抜き、応急運転基板の0秒に差し込んでください。
- メイン基板の0秒コネクタを抜き、応急運転基板の0秒に差し込んでください。
- メイン基板の0秒コネクタを抜き、応急運転基板の0秒に差し込んでください。
- ユニットの元電源を0秒にしてください。
- 運転スイッチを「運転」にすると圧縮機が運転します。

0秒は全速運転にしかなりませんが、風量が多い場合は応急運転基板の0秒もしくは0秒コネクタのどちらか1つを抜くことにより、0秒モータの0秒を停止することができます。
また、応急運転時はインペッション制御が働きませんので、次のような方法で吐出ガスの上昇を防いでください。
① 液操作弁のサービスポートと吸入操作弁のサービスポートをチャージングホース等で接続し、液操作弁のバルブにて流量を調節する。
② 蒸気弁側の膨張弁開度を調整し、蒸気蒸気を圧縮機に返す。

応急運転時に働く保護装置は下記です
① 高圧カット（① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ⑰ ⑱ ⑲ ⑳ ⑳ ㉑ ㉒ ㉓ ㉔ ㉕ ㉖ ㉗ ㉘ ㉙ ㉚ ㉛ ㉜ ㉝ ㉞ ㉟ ㉟ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ ㊶ ㊶ ㊷ ㊸ ㊹ ㊺ ㊻ ㊼ ㊽ ㊾ ㊿ ㊁ ㊁ ㊂ ㊃ ㊄ ㊅ ㊆ ㊇ ㊈ ㊉ ㊊ ㊋ ㊌ ㊍ ㊎ ㊏ ㊐ ㊑ ㊒ ㊓ ㊔ ㊕ ㊖ ㊗ ㊘ ㊙ ㊚ ㊛ ㊜ ㊝ ㊞ ㊟ ㊠ ㊡ ㊢ ㊣ ㊤ ㊥ ㊦ ㊧ ㊨ ㊩ ㊪ ㊫ ㊬ ㊭ ㊮ ㊯ ㊰ ㊱ ㊲ ㊳ ㊴ ㊵ ㊶ _ckf_11.png
ディップスイッチ設定（メイン基板）

<table>
<thead>
<tr>
<th>項目</th>
<th>有無</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>表示切替</td>
<td>使用しないでください。</td>
<td></td>
</tr>
<tr>
<td>ボンプアサート設定</td>
<td>常時ボンプアサート制御</td>
<td>ボンプアサート制御と組合せの不可</td>
</tr>
<tr>
<td>運転履歴表示設定</td>
<td>運転履歴表示</td>
<td>運転履歴時刻消去と組合せ不可</td>
</tr>
<tr>
<td>取扱説明書</td>
<td>業務用</td>
<td>低圧設定値の初期化</td>
</tr>
<tr>
<td>運転履歴設定</td>
<td>業務用</td>
<td>低圧設定値の初期化</td>
</tr>
<tr>
<td>目標蒸発温度設定</td>
<td>目標温度設定</td>
<td>一例</td>
</tr>
<tr>
<td>目標結露温度設定</td>
<td>目標温度設定</td>
<td>0.01度Cまで設定</td>
</tr>
<tr>
<td>油浸式電気設定</td>
<td>油浸式電気</td>
<td>使用しないでください</td>
</tr>
<tr>
<td>機種設定</td>
<td>機種</td>
<td></td>
</tr>
<tr>
<td>機種設定</td>
<td>機種</td>
<td></td>
</tr>
<tr>
<td>通信システムの設定</td>
<td>通信システムの設定</td>
<td>通信システムの設定</td>
</tr>
<tr>
<td>通信システムの設定</td>
<td>通信システムの設定</td>
<td>通信システムの設定</td>
</tr>
</tbody>
</table>

設定値のユーティーの元電源を使用も含めて記憶しています。ロータリーを使用する場合はつづつ行ってください。
ディップスイッチによる表示機能

ディップスイッチ（□□□□）の組合せにより各種データを表示させることが可能です。□
（□：□□□□□□□□を意味します。）

ディップスイッチ（□□□□）設定の表示内容一覧表

<table>
<thead>
<tr>
<th>項目</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>運転状態</td>
<td>低圧圧力 低圧圧力と異常コードの交互表示</td>
</tr>
<tr>
<td>運転モード</td>
<td>停止</td>
</tr>
<tr>
<td>運転表示</td>
<td>停止</td>
</tr>
<tr>
<td>制御モード</td>
<td>停止</td>
</tr>
<tr>
<td>低圧コード</td>
<td>低圧</td>
</tr>
<tr>
<td>逆圧コード</td>
<td>逆圧</td>
</tr>
<tr>
<td>高圧異常コード</td>
<td>高圧異常</td>
</tr>
<tr>
<td>高圧異常コード</td>
<td>高圧異常</td>
</tr>
<tr>
<td>逆圧異常コード</td>
<td>逆圧異常</td>
</tr>
<tr>
<td>逆圧異常コード</td>
<td>逆圧異常</td>
</tr>
<tr>
<td>電源用波形</td>
<td>電源</td>
</tr>
<tr>
<td>自己アドレス設定</td>
<td>アドレス設定</td>
</tr>
<tr>
<td>異常予測中</td>
<td>異常予測中</td>
</tr>
</tbody>
</table>
| 異常予 untersuchung }
<table>
<thead>
<tr>
<th>項目</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>異常履歴</td>
<td></td>
</tr>
<tr>
<td>对出配管温度</td>
<td></td>
</tr>
<tr>
<td>外気温度</td>
<td></td>
</tr>
<tr>
<td>ホートル温度</td>
<td></td>
</tr>
<tr>
<td>高圧圧力</td>
<td></td>
</tr>
<tr>
<td>低圧圧力</td>
<td></td>
</tr>
<tr>
<td>直流部母線電流値</td>
<td></td>
</tr>
<tr>
<td>直流部母線電流値</td>
<td></td>
</tr>
<tr>
<td>直流部母線電流値</td>
<td></td>
</tr>
<tr>
<td>直流部母線電流値</td>
<td></td>
</tr>
<tr>
<td>現在の制御指示</td>
<td></td>
</tr>
<tr>
<td>周波数</td>
<td></td>
</tr>
<tr>
<td>目標価</td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>備考</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 所有内容为日语，无法提供英文转写。
<table>
<thead>
<tr>
<th>項目</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考欄に記載される内容は、各項目別の詳細情報を提供するためのスペースです。
<table>
<thead>
<tr>
<th>項目</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>低圧$m_4$ト固数</td>
<td></td>
</tr>
<tr>
<td>圧用$m_4$ト固数</td>
<td></td>
</tr>
<tr>
<td>低圧$m_4$ト固数</td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>備考</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通電流速軸</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通負荷保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>モトボク異常</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>母線下保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通電流速軸</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通負荷保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>モトボク異常</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>母線下保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通電流速軸</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通負荷保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>モトボク異常</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>母線下保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通電流速軸</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通負荷保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>モトボク異常</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>母線下保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通電流速軸</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通負荷保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>モトボク異常</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>母線下保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通電流速軸</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通負荷保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>モトボク異常</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>母線下保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通電流速軸</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>通負荷保護</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>モトボク異常</td>
</tr>
<tr>
<td>資常発生指数</td>
<td>母線下保護</td>
</tr>
<tr>
<td>項目</td>
<td>備考</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>常発生</td>
<td></td>
</tr>
</tbody>
</table>
フラグ表示

表において、フラグ表示を行う内容は、図の通りのように表示します。


フラグは図のように、それぞれ、表示される表示部分を含めて、一つのフラグを表します。フラグは図のように、各部分を含めて表示を、フラグを意味します。フラグ時は消灯します。

フラグの設定で図のフラグを表示させるので、全てのフラグが図の場合は、図の通りです。

フラグによる表示は、電磁弁などの図の状態を表示する場合に使用し、表で数値範囲のない項目のものは全てフラグ表示となります。
ディップスイッチ設定内容詳細

さんが當地の場合
さんが当地、さんが当地、さんが当地、さんが当地、さんが当地の各設定値に従う。
さんが当地の場合（さんが当地とされた場合）
さんが当地、さんが当地、さんが当地、さんが当地の設定値を初期値とする。
下記参照
さんが当地：初動停止を解除し自動制御とする。
さんが当地：運転周波数固定を解除し自動制御とする。
さんが当地：目標蒸発温度を当地とする。
さんが当地：目標冷凝温度を外気温度ととする。

さんが当地：さんが当地

常時はさんが当地制御を実行する。
低圧入切が値は目標蒸発温度に応じて自動計算。

さんが当地の場合

外気が当地以下の時に低圧が値をした場合、0分後に低圧が値以下でも圧縮機を再起動する。
（起動後、低圧が値にななると圧縮機は停止する。）
さんが当地：0分再起動防止モードと組合せ使用はできません。

さんが当地：圧縮機連続履歴消

さんが当地の場合

圧縮機連続履歴を保持する。

さんが当地の場合（さんが当地とされた場合）

圧縮機連続履歴をクリアする。

さんが当地：異常履歴消

さんが当地の場合

異常履歴を保持する。

さんが当地の場合（さんが当地とされた場合）

異常履歴をクリアする。

さんが当地：低圧が値を一律モード

さんが当地の場合

目標蒸発温度に応じて自動計算。

さんが当地の場合

低圧入切が値を常に固定。

切が値：00000

入圧：00000

さんが当地：開度固定設定モード

さんが当地の場合は当地設定を確定。

さんが当地の場合は当地設定の設定値は当座設定の設定値を当座設定値とされる。

さんが当地の場合は当地設定の設定値が当地設定を当座設定とされる。

当地設定が000以外は自動制御となる。

設定値はエンジンの元電圧を000ととしても記録しています。

さんが当地：外気温度異常・液パック異常検知無視

さんが当地の場合

外気温度が異常検知を検知する。

異常コードの記録のみで、停止はしない。

液パックによる異常停止条件を検知すると異常停止する。

さんが当地の場合

外気温度が異常検知を検知する。

液パックによる異常停止条件を検知した場合、0分間停止するだけで異常停止しない。
【①】圧縮機運転周波数固定設定

【②】が "①"の場合

【③】①つの時①①-①①の設定値を確定。①

【④】が "①"の場合

圧縮機運転周波数固定設定モードとなる。①-①により設定値を変更。①-①→①-①

設定値は圧縮機運転周波数となる。①-①→①-①→①

設定値が "①"以外は自動制御となる。①

設定値はユニットの元電源を "①"しても記憶しています。①

【⑤】目標蒸発温度設定モード

目標蒸発温度設定の項参照

設定値はユニットの元電源を "①"しても記憶しています。①

【⑥】目標凝縮温度設定モード

ファンコントロール制御の項参照

設定値はユニットの元電源を "①"しても記憶しています。①

【⑦】分再起動防止モード設定

【⑧】が "①"の場合

低圧圧力後10分間は低圧が入値となっても圧縮機は起動しない。①

【⑨】が "①"の場合

低圧圧力後、低圧が入値となれば圧縮機が起動する。①

【⑩】: "①" "①"との組合せ使用はできません。①

【⑪】: 油戻し運転設定

【⑫】が "①"の場合

油戻し運転制御あり

【⑬】が "①"の場合

油戻し運転制御なし

【⑭】: 起動時のファン回転数出力設定

【⑮】が "①"の場合

圧縮機起動前の10秒間はファン回転数 "①"を出力する。①

【⑯】が "①"の場合

圧縮機起動前の10秒間はファン回転数 "①"を出力しない。①

【⑰】: "①" "①" (サービス用)

【⑱】が "①"の場合

通常運転時には "①"としてください。①

【⑲】が "①"の場合

商用運転のみ、低圧入[切]値が切値： "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①" "①”
１．試運転時の確認事項

（１）試運転前の確認

□ 語配線がないことを確認してください。
□ 配線施工の後、必ず電路と大地間及び電線相互間について絶縁抵抗を測定し、１MΩ以上あることを確認してください。
（但し、電子基板が損傷するので、コントローラの絶縁抵抗は測定しないでください。）
□ 操作弁を全開にしてください。
□ 潤滑油のフォーミング（泡立ち）防止用クランクケースヒータは圧縮機停止時のみ通電します。ユニットの元電源を半日以上遮断していた場合は、始動前に少なくとも３時間通電し、潤滑油を加熱してください。

（２）試運転中の確認

□ ショートサイクル運転の確認
圧縮機の運転時間・停止時間のサイクルが半分未満である場合はショートサイクル運転です。
この場合、ショートサイクル運転の原因を取り除いてください。（ショートサイクル運転の防止の項を参照ください）
なお、当機には過度のショートサイクル運転を防止するためコントローラによる半分間の遅延タイムを設けています。

□ ユニット運転状態の確認（各温度の目安はー参照）

□ 高圧が異常に高くないか確認してください。
　圧縮機の運転時間・停止時間のサイクルが半分未満である場合はショートサイクル運転です。
　異常に高い場合は、冷媒の過充満がないか、送風機が正常か、放熱器が異常に汚れていないかなどを確認願います。
□ ユニット吸込ガス温度が異常に高くないか確認してください。
　吸込ガス温度が半分以上を越える場合は改善が必要です。冷媒量が不足していないか、吸入管の断熱は十分かなどを確認願います。
□ 液パック運転していないか確認してください。
　ユニット吸込ガスの過熱度を半分以上あることを確認してください。
　圧縮機の下部に着霜している場合は、液パック運転となっていますので、膨張弁の開度調整、感温筒の取付け位置・状態、冷却ファンの運転（停止していなないか、回転数が少なくなっているか）などを点検し、液パックさせないようにしてください。

２．コントローラー

□ コントローラーは制御箱内に設置しています。
□ コントローラーは電子回路ですので、絶縁抵抗の測定は行わないでください。
□ 電源周波数を切換スイッチはありません。
□ コントロール制御
　使用目的に合せたファン制御ができます。ファンコントロール制御を参照ください。
□ サービス時
　コントローラのサービス時に基板への配線を外した場合、必ず元のように結線されているかを十分に確かめてください。
　万一、誤配線されて運転すると故障の原因になります。
□ サービス時
　ラジオやテレビへのノイズ防止のために、電源ラインおよびコントローラよりラジオ・テレビのアンテナまでの距離は１m
　以上としてください。
□ コントローラの半分については半分間の遅延タイムを設けています。
□ コントローラが故障した場合の応急処置
　万一故障した場合は、応急運転ができます。
□ 万一障害状態の場合は、応急運転ができます。
□ 万一需要があるときはリセットボタンを押してください。
3. 低圧压力制御の設定方法 □ □コントローラと制御の目標蒸発温度設定を参照してください。

4. ショートサイクル運転の防止
(1) ショートサイクル運転の防止
ショートサイクル運転を防止するためには最低限図 □ □の運転パターンになるように設定することが必要です。ショートサイクル運転（頻繁な始動・停止の繰り返し運転）を行うと始動時の油上り量過多により潤滑油不足の原因となります。

5. サービス時のポンプダウン方法について
サービス時に低圧側を □ □までポンプダウンさせる場合、次のようにしてください。
□ 液操作弁や油液吹け管を閉じ、通常運転にてポンプダウンさせた後、運転スイッチを『停止』側にする。
□ メイン基板のディップスイッチ □ □の番を □ □ にする。
□ 運転モード切換スイッチを『商用運転』側にする。
□ 応急運転基板の □ □ 黄色コネクタ □ □ を外し、付属の赤色コネクタをサービス用を差し込む。
□ 運転スイッチを『運転』にすると、商用運転にて □ □までポンプダウンします。
□ 駆動切換： □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
製品の様子がおかしい時

・故障判定
冷凍機が正常に運転しない場合、次のような方法で故障判定を行なうことができます。

メイン基板のデジタル表示が点灯している場合
異常コード別チェック要領

メイン基板のデジタル表示が点灯していない場合
電源回路チェック要領

・異常コード別チェック要領
メイン基板のデジタル表示が点灯している場合、デジタル表示とディープスイッチIIの組合せ表示と異常コードを用いて故障の原因究明を行なうことができます。

異常コード別対処方法一覧表を参照し、チェックを行なってください。

異常コード別対処方法

異常コードが低圧圧力と異常コードを交互に点滅表示している場合
異常コード別対処方法一覧表を参照し、チェックを行なってください。

異常コードが低圧圧力しか表示していない場合
ディープスイッチIIの組合せ表示と異常コードの組合せ表示と異常コードを確認してください。
ここで、異常予防中・異常・異常停止のアラーム表示がなければ現在は正常な状態です。
異常予防履歴が残っていないか調査してください。
異常履歴のデータ運転中に異常コードが残っていないか調査してください。
異常履歴のデータ運転中に異常コードが残っていないか調査してください。
異常予防コード・異常コードが履歴に残っていた場合、異常コード別対処方法一覧表を参照し、チェックを行なってください。
異常予防コード・異常コードが履歴に残っておらず、冷凍機が正常に運転しない場合、他の原因が考えられます。目標発生温度設定、目標温度設定、ディープスイッチによるサービス設定、その他、冷媒回路、電気回路に不具合がないか確認してください。
### 異常コード別対処方法一覧表

<table>
<thead>
<tr>
<th>異常コード</th>
<th>理由</th>
<th>実施内容</th>
<th>前処置</th>
<th>決定方法及び処置的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001</td>
<td>機械的低圧力発生</td>
<td>開閉器作動</td>
<td>00001</td>
<td>機械的低圧力発生が確認された場合は、低圧力を0.01MPa以上にすることを確認する。</td>
</tr>
<tr>
<td>00002</td>
<td>機械的低圧力発生</td>
<td>通知機械的低圧力発生</td>
<td>00002</td>
<td>00002通知機械的低圧力発生が確認された場合は、低圧力を0.01MPa以上にすることを確認する。</td>
</tr>
<tr>
<td>00003</td>
<td>機械的低圧力発生</td>
<td>[通知]機械的低圧力発生</td>
<td>00003</td>
<td>00003通知機械的低圧力発生が確認された場合は、低圧力を0.01MPa以上にすることを確認する。</td>
</tr>
<tr>
<td>00004</td>
<td>機械的低圧力発生</td>
<td>[通知]機械的低圧力発生</td>
<td>00004</td>
<td>00004通知機械的低圧力発生が確認された場合は、低圧力を0.01MPa以上にすることを確認する。</td>
</tr>
<tr>
<td>00005</td>
<td>機械的低圧力発生</td>
<td>[通知]機械的低圧力発生</td>
<td>00005</td>
<td>00005通知機械的低圧力発生が確認された場合は、低圧力を0.01MPa以上にすることを確認する。</td>
</tr>
</tbody>
</table>

### その他
- 低圧力の検知時に、必ず機械的低圧力発生の確認を行い、必要に応じて対応を行ってください。
<table>
<thead>
<tr>
<th>質問コード</th>
<th>質問</th>
<th>意味・検出手順</th>
<th>要因</th>
<th>対策方法及び処置</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>高圧力圧力異常</td>
<td>〇 運転中に高圧力圧力が【】以上を検知すると【回目の検知後】</td>
<td>〇 压縮機を停止し/分解部品</td>
<td>〇 運転中的高圧力圧力異常の原因を検出/対策方法を確認</td>
</tr>
<tr>
<td>003</td>
<td>高圧力圧力異常/傾斜</td>
<td>〇 压縮機を停止し/分解部品</td>
<td>〇 压縮機を停止し/分解部品</td>
<td>〇 压縮機を停止し/分解部品</td>
</tr>
</tbody>
</table>

補充：
- 運転中に高圧力圧力が【】以上を検知すると【回目の検知後】は、压縮機を停止し/分解部品が必要です。
<table>
<thead>
<tr>
<th>機器保存作業の種類</th>
<th>各種機器の種類</th>
<th>設備点検手順</th>
<th>電気機器の種類</th>
<th>ワン方法及び処置</th>
</tr>
</thead>
<tbody>
<tr>
<td>機器保存作業の種類</td>
<td>各種機器の種類</td>
<td>設備点検手順</td>
<td>電気機器の種類</td>
<td>ワン方法及び処置</td>
</tr>
<tr>
<td>基本機器X</td>
<td>冷凍機器</td>
<td>作業1</td>
<td>電気機器</td>
<td>作業2</td>
</tr>
<tr>
<td>機器保存作業の種類</td>
<td>各種機器の種類</td>
<td>設備点検手順</td>
<td>電気機器の種類</td>
<td>ワン方法及び処置</td>
</tr>
<tr>
<td>基本機器Y</td>
<td>冷凍機器</td>
<td>作業3</td>
<td>電気機器</td>
<td>作業4</td>
</tr>
<tr>
<td>機器保存作業の種類</td>
<td>各種機器の種類</td>
<td>設備点検手順</td>
<td>電気機器の種類</td>
<td>ワン方法及び処置</td>
</tr>
<tr>
<td>基本機器Z</td>
<td>冷凍機器</td>
<td>作業5</td>
<td>電気機器</td>
<td>作業6</td>
</tr>
</tbody>
</table>
### 表示コード
- 0000:  GREEN
- 0001:  ORANGE
- 0002:  YELLOW
- 0003:  RED
- 1000:  GREEN
- 1001:  ORANGE
- 1002:  YELLOW
- 1003:  RED

### 1.0.0.0  列名
<table>
<thead>
<tr>
<th>補正コード</th>
<th>軟体・検知手段</th>
<th>質問</th>
<th>対応方法及び処置</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>0002</td>
<td>0002</td>
<td>0002</td>
<td>0002</td>
</tr>
<tr>
<td>0003</td>
<td>0003</td>
<td>0003</td>
<td>0003</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
</tr>
<tr>
<td>1002</td>
<td>1002</td>
<td>1002</td>
<td>1002</td>
</tr>
<tr>
<td>1003</td>
<td>1003</td>
<td>1003</td>
<td>1003</td>
</tr>
<tr>
<td>項目コード</td>
<td>異常状態</td>
<td>原因</td>
<td>記載方法及処置</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>----------------</td>
</tr>
<tr>
<td>040400</td>
<td>高圧力異常</td>
<td>1. 運転中に高圧力が発生し、2. 压力値をもって停止した。</td>
<td>1. 压力値が見掛け上異常である。2. 压力値が見掛け上異常である。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目コード</th>
<th>異常状態</th>
<th>原因</th>
<th>記載方法及処置</th>
</tr>
</thead>
<tbody>
<tr>
<td>030300</td>
<td>2.高圧力異常 · 3.同日異常</td>
<td>1. 2. 運転中の高圧力値が検知された。2. 压力値をもって停止した。</td>
<td>1. 压力値が見掛け上異常である。2. 压力値が見掛け上異常である。</td>
</tr>
</tbody>
</table>
电源回路チェック要領

メイン基板のデジタル表示が点灯していない場合、下表に従いチェックを行ってください。

電源再投入
主要電気回路部品の故障判定方法

Ⅰ. 压力センサ

Ⅰ-1. 高圧圧力センサ（ディープスイッチ）

高圧圧力センサによる検知圧力と高圧ゲージ圧力と比較しながら下記から故障の有無をチェックを行なう。

メイン基板のディップスイッチを以下のようにして、高圧圧力センサの検知圧力が表示される。

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
</tr>
</thead>
</table>

- 停止状態にてゲージ圧力と 1 表示による圧力を比較する。
  - ゲージ圧力が 0.0〜0.1 MPa 程度の場合、ガス満たによる内圧低下
  - ゲージ圧力が 0.1〜0.2 MPa 程度の場合、コネクタの接触不良、外れを確認
- 運転状態にてゲージ圧力と 1 表示による圧力を比較する。
  - 運転圧力差が 0〜0.0 MPa 程度の場合、高圧圧力センサ、メイン基板ともに正常
  - 運転圧力差が 0.0〜0.1 MPa 程度の場合、高圧圧力センサ不良（特性劣化）
  - 運転圧力差が 0.1〜0.2 MPa 程度の場合、メイン基板不良

- 高圧圧力センサコネクタをメイン基板から取外し、1 表示による圧力をチェックする。
  - 高圧圧力差が 0〜0.0 MPa 程度の場合、高圧圧力センサ不良
  - 高圧圧力差が 0.0〜0.1 MPa 程度の場合、メイン基板不良

- 高圧圧力センサの構成

高圧圧力センサは右図の回路にて構成され、赤 - 黒間の抵抗を加えると、白 - 黒間に圧力が応じた電圧が出され、高圧をマイコンが取込んだり、ディップスイッチで表示されます。

压カ

<table>
<thead>
<tr>
<th>本体側</th>
<th>メイン基板側</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>1 1 1 1 1 1</td>
</tr>
<tr>
<td>2 2 2</td>
<td>2 2 2 1 2</td>
</tr>
<tr>
<td>3 3 3</td>
<td>1 3 1 3 1</td>
</tr>
</tbody>
</table>

*圧力センサ本体側はコネクタ接続仕様。
コネクタのピン番号は圧力センサ本体側とメイン基板側では異なる。
低圧圧力センサ（ディスプレイ）

低圧圧力センサの検知圧力と低圧ゲージ圧力と比較しながら下記の手順に従ってチェックを行なう。

<table>
<thead>
<tr>
<th>1 時間</th>
<th>2 時間</th>
<th>3 時間</th>
<th>4 時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.004</td>
<td>0.007</td>
<td>0.010</td>
</tr>
</tbody>
</table>

停止状態にてゲージ圧力と1表示による圧力を比較する。
- ゲージ圧力が0〜0.001 MPaの場合はガス漏れによる内圧低下
- ゲージ圧力が0.002〜0.005 MPaの場合はコネクタの接触不良、はずれを確認し再設定
- ゲージ圧力が0.006〜0.009 MPaの場合はコネクタの接触不良、はずれを確認し再設定
- ゲージ圧力が0.010 MPa以上の場合は部品が故障している場合、変圧器圧力センサ不良

運転状態にてゲージ圧力と1表示による圧力を比較する。
- 1表示の圧力が0〜0.001 MPa/3時間以内の場合、低圧圧力センサ、メイン基板とともに正常
- 1表示の圧力が0.002〜0.005 MPa/3時間を超える場合、低圧圧力センサ不良（特性劣化）
- 1表示の圧力が0.006〜0.009 MPa/3時間を超える場合、低圧圧力センサ不良

低圧圧力センサコネクタをメイン基板から取外し、1表示による圧力をチェックする。
- 1表示の圧力が0〜0.001 MPa/3時間以内の場合、低圧圧力センサ不良
- 1表示の圧力が0.002〜0.005 MPa/3時間を超える場合、低圧圧力センサ不良
- 1表示の圧力が0.006〜0.009 MPa/3時間を超える場合、低圧圧力センサ不良

高圧圧力センサコネクタ（コネクタ）をメイン基板から取外し、低圧圧力センサ（ディスプレイ）用のコネクタに差し込んで、1表示による圧力をチェックする。
- 1表示の圧力が0〜0.001 MPa/3時間以内の場合、低圧圧力センサ不良
- 1表示の圧力が0.002〜0.005 MPa/3時間を超える場合、低圧圧力センサ不良
- 1表示の圧力が0.006〜0.009 MPa/3時間を超える場合、低圧圧力センサ不良

低圧圧力センサの構成
低圧圧力センサは右図の回路にて構成され、赤・黒間に150 kΩを加えると、白・黒間に圧力に応じた電圧が出され、この電圧をマイコンが取込んで表示している。

<table>
<thead>
<tr>
<th>本体側</th>
<th>メイン基板側</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ビン</td>
<td>3ビン</td>
</tr>
<tr>
<td>2ビン</td>
<td>2ビン</td>
</tr>
<tr>
<td>3ビン</td>
<td>1ビン</td>
</tr>
</tbody>
</table>

*圧力センサ本体側はコネクタ接続仕様。
コネクタのピン番号は圧力センサ本体とメイン基板側では異なる。
温度センサ

以下のフロート故障判定に従って故障判定を行ってください。

【低温用サーミスタ：】
サーミスタ\( \beta = \frac{R_1}{R_2} \times 100 \% \)
\( R_1 = \frac{R}{0.75} + 0.05 \times 0.7 \)

【高温用サーミスタ：】
サーミスタ\( \beta = \frac{R_1}{R_2} \times 100 \% \)
\( R_1 = \frac{R}{0.75} + 0.05 \times 0.7 \)
弁の開度はパルス数に比例して変化します。
＜メイン基板と図1（電子制御弁）の接続＞

<table>
<thead>
<tr>
<th>出力相</th>
<th>出力状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>番号</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>02</td>
<td>0</td>
</tr>
<tr>
<td>03</td>
<td>0</td>
</tr>
<tr>
<td>04</td>
<td>0</td>
</tr>
</tbody>
</table>

パルス信号の出力と弁動作
閉弁時 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 1
開弁時 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 8
の順に出力パルスが変化する

1. 開弁時開度が変化しない時は全出力相が0 0 0 0となる。
2. 出力が欠相したり、0 0 0 0のままになると、モーターはスムーズに回転できず、カチカチ鳴って振動が生じます。

電源投入時、弁の位置を確定するためパルスの閉弁信号を出し、必ず0点にします。（パルス信号は約1秒間出力されます。）

弁がスムーズに動く時は、0 0 0からの音、振動の発生はないが、弁をロックした時には、音が発生します。

音の発生はドライバー等を当て、柄を耳につけて確認できます。

電流が480パルスに内蔵されている後流があると音が小さくなることがあります。
<table>
<thead>
<tr>
<th>判定方法及び想定される故障モード</th>
<th>事象</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td>メカ部のロック</td>
<td>メカ部のロック状態で、駆動するとモータが回りをし、この時、カチカチという小さな音が発生する。閉時、開弁時ともに音が発生する場合は異常です。</td>
<td>を交換する。</td>
</tr>
<tr>
<td>モータコイルの断線またはショート</td>
<td>各コイル間（灰・橙・灰・赤・灰・黄・灰・黒）の抵抗をテスターで測定し、3%以内であれば正常です。</td>
<td>を交換する。</td>
</tr>
<tr>
<td>コネクタの結線間違えまたは接触不良</td>
<td>コネクタ部の端子の抜け及びリード線の色を目視チェック。制御基板側のコネクタを抜き、テスターにて導通チェック。</td>
<td>不具合箇所の導通チェック。</td>
</tr>
</tbody>
</table>
コイル取外し要領

構成 

コイルと本体が分離できるようになっています。

コイルの取外し方

本体が動かないよう本体下部（図Ⅰ部）をしっかりと固定し、コイルを上方へ抜きます。この時ストッパーが引っ掛かり、コイルが抜けにくいときはコイルを左右に回してストッパーを本体のストッパー用窪みから外してから上に抜いて下さい。

本体を握らず、コイルだけを引き抜くと配管に無理な力が加わり、配管が折れ曲がりますので必ず本体が動かないようにしながら取り外して下さい。

コイルの取付け方

本体が動かないよう本体下部（図Ⅰ部）をしっかりと固定し、コイルを上方から差し込み、コイルのストッパーを本体の窪みに確実に入れて下さい（ストッパー用の窪みは本体の周方向に4カ所ありますがいずれの窪みでも構いません。ただし、リード線は無理がかかったり、本体の周りに巻き付いたりしないよう注意）。本体を握らぬ、コイルだけを押し込むと配管に無理な力が加わり、配管が折れ曲がりますので必ず本体が動かないようにしながら取り付けて下さい。
### インバータ

インバータの異常を未然に防ぐために、インバータの異常を早期に発見するための異常判定と処置を以下に示します。

<table>
<thead>
<tr>
<th>異常表示・不具合現象</th>
<th>処置・点検項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 母線電圧異常（起動直後）</td>
<td>a. ブレーカ容量チェック</td>
</tr>
<tr>
<td>② 母線電圧異常（運転中）</td>
<td>a. 運転電流が問題なければ③[1]へ</td>
</tr>
<tr>
<td></td>
<td>b. 運転電流を確認（三相バランス）</td>
</tr>
<tr>
<td>③ 主電源ブレーカトリップ</td>
<td>a. 主電源ブレーカトリップ</td>
</tr>
<tr>
<td>④ 主電源電流のトリップ</td>
<td>a. 満電流制御器容量、電流制限チェック</td>
</tr>
<tr>
<td>⑤ 運転機のみ運転しないため</td>
<td>a. ディップスイッチ表示機能でインバータ周波数を確認し運転状態であれば①[3]へ</td>
</tr>
<tr>
<td>⑥ 常時大きく振動、あるいは異常音がする</td>
<td>a. 周辺機器の電源配線等がユニットの電源配線と近接していないかチェックする</td>
</tr>
</tbody>
</table>

1. インバータ内には大容量の電解コンデンサを使用していますので、主電源を切った後も電圧が残っており感電する恐れがあります。従って、インバータ関係のチェックを行う際には、主電源を切った後に十分な時間（5〜10分間）待った後電解コンデンサの両端電圧が低減したのを確認してください。2. インバータは配線の電圧を挿取り換えた状態、コネクタ差しなどがありますと①[3]等の部品が必要となります。部品交換後に異常が発生する場合は、配線間違が原因となっていることが多いので、配線、ネジ、コネクタ、ファストン等の挿入部位を確認してください。

1. インバータが①のままの状態で、インバータ関連コネクタの抜き差しはしないでください。基板破損の原因となります。

* 上記以外の場合は工場ご相談ください。
### インバータ出力関係のトラブル処置

<table>
<thead>
<tr>
<th>チェック項目</th>
<th>現象</th>
<th>処置</th>
</tr>
</thead>
<tbody>
<tr>
<td>ユニットを運転し変圧器の運転状態音を確認する</td>
<td>□音がせず異常に変化する</td>
<td>[2]へ</td>
</tr>
<tr>
<td></td>
<td>□高周波音はするが運転せず異常変化する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□短時間運転音がするがすぐに異常変化する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□数時間運転できるが異常変化する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□異常が再現しない</td>
<td></td>
</tr>
</tbody>
</table>

### 主電源ブレーカトリップ時のトラブル処置

<table>
<thead>
<tr>
<th>チェック項目</th>
<th>現象</th>
<th>処置</th>
</tr>
</thead>
<tbody>
<tr>
<td>電源用端子台ダブ＝1端子間抵抗メグチェック</td>
<td>□0→数ω、またはメグ不良</td>
<td>インバータ主回路内の各部品をチェックする（抵抗・メグ等）</td>
</tr>
</tbody>
</table>
| | □メグ不良 | a. ダイオードスタック
b. ダイオードスタックの故障判定の参照 |
| 電源を再投入しチェック | □主電源ブレーカトリップ | 参照 |
| | □〜表示せず | a. メオテー
b. メオテーの故障判定の参照 |
| ユニットを運転し動作チェック | □主電源ブレーカトリップで正常に運転する | a. 変圧器出力、変圧器出力の相対的な変化を確認 |
| | □主電源ブレーカトリップで異常 | b. 逆の場合 |

### について

- a. 配線不良の際は接続不良
- b. 交流ノイズフィルタが入っていない場合 |
- c. 交流ノイズフィルタが入っている場合 |
- d. メオテーに外部入力がある場合 |
インバータ主回路部品単品の簡易チェック方法

<table>
<thead>
<tr>
<th>部品名</th>
<th>判定要領</th>
</tr>
</thead>
<tbody>
<tr>
<td>ダイオードスタック</td>
<td>&quot;ダイオードスタックの故障判定&quot; 参照（X）</td>
</tr>
<tr>
<td>リフレ インテリジェントパワーモジュール</td>
<td>&quot;Xの故障判定&quot; 参照（X）</td>
</tr>
<tr>
<td>突入電流防止抵抗 1</td>
<td>終端間抵抗チェック：××××××%</td>
</tr>
</tbody>
</table>

電磁接触器 1

各端子間抵抗チェック

取付け方向 上

チェック箇所 判定値

| 0列 | 0.0〜0.000 |
| 0列〜1列 | 0.0 |

テストボタン

直流リアクトル

端子間抵抗チェック：1Ω以下（ほぼ0Ω）
端子 - シャーシ間抵抗チェック：×

交流ノイズフィルタ

各端子間、端子 - ケース間抵抗チェック

チェック箇所 判定値

| 0Ω | 0Ω〜0.000 |
| 0Ω〜1Ω | 0Ω |
| 0Ω〜2Ω | 0Ω |

| 0Ω〜3Ω | 0Ω |
| 0Ω〜4Ω | 0Ω |
| 0Ω〜5Ω | 0Ω |

■ ■ ■ の故障判定
■■の各端子間の抵抗値をアナログテスターにて測定し、その値より故障を判定します。（デジタル式は不可）抵抗値は、抵抗測定に使用するテスターの種類により指示値が異なります。この原因は、■■内のダイオードが非直線性を持つため、テスターの内部のインピーダンス、電圧の違いによる影響がでるためです。
アナログ（メーター）方式テスターの抵抗レンジの内部インピーダンスはメーター指示値の中央値に等しいことにより抵抗レンジの中央値が近いテスターを使用すれば内部インピーダンスの影響を小さくできます。また、内部電圧は■■が一般的であり、故障判定に使用するテスターは、下記条件を満たすものを使用してください。

<table>
<thead>
<tr>
<th>内部電圧</th>
<th>(乾電池一本を電源とする)</th>
</tr>
</thead>
<tbody>
<tr>
<td>抵抗レンジの中央値</td>
<td></td>
</tr>
</tbody>
</table>

市販で最も一般的なテスターの中で、上記条件に合う機種例は次のとおりです。
日置電機製

■判定値■
テスターの抵抗レンジは最小レンジを使用してください。

・外形図■

・内部回路図■
ダイオードスタックの故障判定
ダイオードスタックの各端子間の抵抗値をテスターにて測定し、その値より故障を判定します。
判定値
テスターの抵抗レンジは最小レンジを使用してください。
・外形図

![外形図](image1)

・内部回路図

![内部回路図](image2)

インバータ部品交換時の注意事項
配線間違い、縫みは充分にチェックすること
・ダイオードスタック等の主回路部品配線に関して、縫みがあると破損するおそれがあるので、配線のチェックは充分に行って下さい。
特に、ネジ締付け不良は発見しにくいため、作業後に再度確認を行ってください。
また、各端子間の制御端子は細かいため、G / 0基板との接続は注意しながら行ってください。
・圧縮機への出力配線を誤って接続すると圧縮機が破損しますので、下記の配線図を参考にご配線の上作業してください。

・ダイオードスタックの放熱面にはサービスパッケージに添付されている放熱用グリスを均一に塗ること
放熱用グリスは1 / 2、ダイオードスタック裏面全体に薄く付着させ、固定用ネジで確実に固定して下さい。このグリスが配線端子に付着すると接触不良の原因となりますので、誤って付着した場合は確実にふき取って下さい。

圧縮機へ

![圧縮機](image3)

G / 0基板

電解コンデンサ
故障した場合の処置

1 故障時の注意
万一何らかの原因により、ユニットおよび冷媒回路部品が故障した場合は、故障再発防止のため次の点に注意してください。

- 同じ故障を繰返さないように故障診断を確実に行い、故障箇所と故障原因を必ず突き止めてください。
- 配管接続部からのガス漏れを修理する場合は冷媒を必ず回収し、窒素ガスを通しながら接続を行ってください。
- 部品（圧縮機を含む）故障の場合はユニット全体を交換するのではなく、不良部品のみ交換してください。
- ユニットを廃棄する場合は必ず冷媒を回収してから行ってください。故障原因が不明の場合は、ユニットの形名・製造番号および故障原因を調査の上、担当サービス会社へご連絡ください。

圧縮機交換の場合
圧縮機を交換する場合は冷媒回路内に残留する冷凍機油を除去するため窒素ガス等で吹出してください。（この時には膨張弁を取り外して行ってください。）
圧縮機の吸入、吐出、インジェクション配管は、元の配管形状にしてください。
圧縮機の配線（リリース）は間違えないようにしてください。間違えると逆相になり圧縮機の故障の原因となります。
圧縮機の配線経路は元どおりの経路および配線固定に戻してください。
操作弁は、閉め放しの状態にしないでください。

圧縮機は圧縮機取付板ごと引き出してください。圧縮機取付板は3本のボルトで固定しています。
圧縮機交換要領参照

送風機交換の場合
送風機を交換する場合は冷凍機の元電源を切りにしてください。
モータコネクタは制御箱裏にあります。天井パネルを外して交換してください。
送風機の配線経路は元どおりの経路および配線固定に戻してください。

基板交換の場合
基板を交換する場合は冷媒機の元電源を切りにしてください。
冷媒機の元電源を切りにしても、数分間はコンデンサに電荷が残っています。
インパータ基板のチャージランプが消灯するまで作業は行わなければなりません。
基板を交換してください。
配線のコネクタは正確に差し込み、配線経路は元どおりの経路及び配線固定にしてください。
圧縮機交換要領

圧縮機の元電源を切ってください。

圧縮機の配線（インナーセーモ）を取り外してください。

圧縮機下部にっているサーモスタットを外してください。

圧縮機出配管と吸入配管フランジのボルトを外してください。

圧縮機取付板下側を固定しているボルトを外し、圧縮機取付板ごと圧縮機を引き出してください。

圧縮機取付板上側から圧縮機を取り外し、圧縮機を交換してください。

交換が終わったら、上記〜を逆の手順で取り付けてください。
お客様への説明

次のことをお客様に説明ください。

1 保守のおすすめ
適正な運転調整を行ってください。
工事されたかたは装置を安全にかつ、事故なく長持ちさせるため、顧客と保守契約を結び、点検を実施するようお願いいたします。

2 亀裂液パック防止のご注意
デフロスト後の温風吹出し防止のための短時間を除いて、常に圧縮機の下部に着露している場合は亀裂液パック運転になってしまいますので、膨張弁の開度調整、感温筒の取付け位置・状態・冷却器のファン運転（停止していないか、回転数が少なくなはないか）などを点検し、亀裂液パックさせないようにしてください。

3 運転状態の定期的な確認
適正な運転調整を行った場合の各部温度の目安を下表に示します。工事された方は装置を安全にかつ長持ちさせるため、顧客と保守契約を結び、点検を実施するようお願いいたします。

各部温度の目安

<table>
<thead>
<tr>
<th>部品名</th>
<th>目安温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>吸入ガス管</td>
<td>0〜90℃</td>
</tr>
<tr>
<td>吐出ガス管</td>
<td>80〜100℃</td>
</tr>
</tbody>
</table>

次の条件における値です。
- 電源：三相 0000 000000
- 吸込空気温度：000
- コンプレッサー運転

4 凝縮器フィンの清掃
凝縮器のフィンは、定期的に水道水等で掃除し、清浄な状態でご使用ください。フィンが汚れたままだと、高圧上昇の原因になります。この時、ファンモータや端子箱に水がかからないように注意してください。

5 パネルの清掃
中性洗剤を柔らかな布に含ませて拭き、最後に乾いた布で洗剤が残らないように拭き取ります。ベンジン・シンナー・磨き粉の使用は避けてください。ベンジン・シンナーを使用すると塗膜をいため、鍍が発生することがあります。
6 冷媒回路部品の点検

- 吸入ストレーナにゴミ・異物が詰まっているか？
  - チェックお願いします。
  - また、詰ることが多い場合、異常音が発生することもあります。

- 吸入操作弁を開め放しているか？
  - この場合、ショートサイクル運転（オフ・オフ運転）し、不冷運転または圧縮機故障に至る場合があります。

- 操作弁のキャップ外れ・ゆるみ状態になっていませんか？
  - この場合、空気が混入し、高圧異常になり大変危険です。

- 凝縮器フィンが目詰りを起こしていないか？
  - この場合、高圧及び吐出ガス温度異常になり大変危険です。

- 液操作弁を開める場合、液封になっていませんか？
  - 液電磁弁（蒸発器側）や液管途中のバルブ（現地取付）と液操作弁に挟まれる回路は液封を生じ危険です。液操作弁でポンプダウンして液封を防止してください。

- インジェクションボールバルブを開め放しているか？
  - この場合、インジェクション不足で吐出ガス温度が上昇します。
  - 長期間放置するとインジェクション電磁弁との間で液封を生じ危険です。

- 液管ドライヤ詰りになっていませんか？
  - この場合、冷媒不足で不冷に至ります。
ユニットの保証条件

1 無償保証期間及び範囲
   据付付けの当日を含め1年間が無償保証期間です。対象は、故障した当該部品または弊社が交換を認めた圧縮機及びコンデンシングユニットであり、代品を支給します。ただし、下記使用法による故障については、保証期間中であっても有償となります。

2 保証できない範囲
   ①機種選定、冷凍装置設計に不具合がある場合
   本据付工事説明書に記載事項及び注意事項に従わずに工事を行ったり、冷却負荷に対して明らかに過大過少の能力を持つユニット選定し、故障に至ったと弊社が判断する場合。
   (例 膨張弁の選定ミス・取付ミス・電磁弁なき場合、ユニットに指定外の冷媒を封入した場合、充てん冷媒の種類の表示なき場合など)
   ②弊社の製品仕様を据付に当たって改造した場合、または弊社製品付属の保護機器を使用せずに事故となった場合。
   ③本工事説明書に記載した蒸発温度、冷凝温度、使用外気温度の範囲を守らなかったことによる事故の場合
   規定の電圧以外の条件による事故の場合。
   ④運動、調整、保守が不備なことによる事故
      ・凝縮器の凍結パンク（水冷タイプのみ）
      ・冷却水の水質不良（水冷タイプのみ）
      ・塩害による事故
      ・据付場所による事故（風量不足、腐食性雰囲気、化学薬品等の特殊環境条件下）
      ・調整ミスによる事故（膨張弁のスーパーヒート、S P Rの設定値、圧力開閉器の低圧設定）
      ・ショートサイクル運転による事故（運転止めおのおのおの5分以下をショートサイクルと称す）
      ・メンテナンス不備（ガス漏れを気づかなかった場合）
      ・修理作業ミス（部品違い、欠品、技術不良、製品仕様と著しく相違する場合）
      ・冷媒過剰に、冷媒不足に起因する事故（始動不良、電動機冷却不良）
      ・アイスバックによる事故
      ・ガス漏れ等により空気、水分を吸い込んだと判断される場合。
   ⑤天災、火災による事故
   ⑥据付工事中不具合がある場合
      ・据付工事中取扱い不良のため損傷、破損した場合
      ・弊社関係者が工事上の不備を指摘したにもかかわらず改善されなかった場合
      ・振動が大きく、もしくは振動が大きいのを承知で運転した場合
      ・軟弱な基礎、軟弱な台枠が原因で起こした事故の場合
   ⑦自動車、鉄道、車両、船舶等に搭載した場合
   ⑧その他、ユニット据付、運動、調整、保安上常識になっている内容を逸脱した工事および使用方法での事故
      は一切保証できません。また、ユニット事故に起因した冷却物、営業補償等の2次補償は原則としていたしませんので、損害保険に加入されることを勧めます。

耐塩仕様について
耐塩仕様とは機器内外の鋼製部分やアルミ部分の腐食あるいは配管ロウ付部分等の腐食を防止するための処理を施したもので、標準仕様よりも塩分による耐食性が優れています。
但し、発注においては万全というわけではありません。ユニットを設置する場所や設置後のメンテナンスに充分ご留意ください。
警報装置の設置について

本ユニットには、安全確保のため、種々の保護装置が取付けられています。万一、漏電ブレーカや保護回路が作動した場合に、警報装置がないと、長時間にわたりユニットが停止したままになり、貯蔵品の損傷につながります。適切な処置がすぐできるよう、警報装置の設置や、温度管理システムの確立を計画時点でご配慮くださるようお願いいたします。

冷媒回路

冷媒回路図
**日々．仕様表**

<table>
<thead>
<tr>
<th>項目</th>
<th>形名</th>
<th>ERA -</th>
</tr>
</thead>
<tbody>
<tr>
<td>压縮機</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>吐出量</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>法定冷凍トン</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>冷凍機油</td>
<td>-</td>
<td>バーレルフリーズ</td>
</tr>
<tr>
<td>電</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>运転電流</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>気</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>力率</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>始動電流（商都運転時）</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>压縮機用電動機定格出力</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>送風機用電動機定格出力</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>漏電器（ガラスヒーター）</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>出力周波数</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

印は、凝縮器吸込空気温度、蒸発温度、吸入ガス温度、サブクール、運転周波数の場合です。

**据付後のチェックシート**

据付工事が終わりましたら次の項目を確認のうえ試運転を行ってください。

<table>
<thead>
<tr>
<th>点検項目</th>
<th>点検内容</th>
<th>点検結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>設置・据付</td>
<td>冷凍機の設置回りは必要な空間寸法が守られてますか？</td>
<td></td>
</tr>
<tr>
<td>冷媒配管</td>
<td>ガス圧力チェックは行いましたか？</td>
<td></td>
</tr>
<tr>
<td></td>
<td>操作弁は全開にしていますか？</td>
<td></td>
</tr>
<tr>
<td>電気回路</td>
<td>端子部などに絶縁がないか確認していますか？</td>
<td></td>
</tr>
<tr>
<td></td>
<td>電流ブレーカを使用していますか？</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試運転</th>
<th>騒音・振動</th>
<th>異常音、異常振動がないですか？</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>冷媒漏れ</td>
<td>流出漏れ音がないですか？</td>
</tr>
<tr>
<td></td>
<td>運転圧力</td>
<td>異常な圧力（高圧・低圧）でないですか？</td>
</tr>
<tr>
<td></td>
<td>電気系統</td>
<td>チャタリングがないですか？（0時～時）</td>
</tr>
<tr>
<td></td>
<td>サイクル</td>
<td>ショートサイクル運転していませんか？</td>
</tr>
</tbody>
</table>
製品運搬と開梱時のお願い

■ 製品運搬時の注意
□ 持ち上げ禁止です。人力で製品を持ち上げて運搬しないでください。
□ 製品が落下、転倒し危険です。
□ 製品の取っ手は据付時の位置合わせにご利用ください。
□ ユニットは垂直に、搬入してください。

■ 製品開梱時の注意
□ 包装用のポリ袋で子供が遊ばないように、破ってから廃棄してください。窒息事故の原因になります。

■ 製品質量

<table>
<thead>
<tr>
<th>形 名</th>
<th>重量</th>
</tr>
</thead>
</table>

■ 製品吊下げ時の注意
□ 製品を吊下げて搬入する場合はロープをユニット下のアシ穴部○ケ所に通してください。
□ ロープは、必ず同所吊とし、ユニットに衝撃を与えないようにしてください。
□ ロープ掛けの角度は下図のように○○以下にしてください。
□ ロープは40m以上のものを○本使用してください。
□ 吊下げロープの太さは、ロープ吊部の大きさに合ったロープを使用してください。
□ 細すぎるロープを使用すると、ロープが切れて製品が落下する危険があります。

警告
□ ロープは均等に掛けてゆっくり吊り上げ
□ ロープのはずれや、ユニットの傾斜が考えられないようにしてください
□ 本ユニットは重心が片寄っていますので、ロープがずれると製品が落下する恐れがあります。

危険

製品の吊下げ寸法
三菱電機コンデンシングユニット
□形 インバータスクロール 技術マニュアル □□□□年度版

お問い合わせは下記へどうぞ

三菱電機株式会社

三菱電機冷熱相談センター
0357-60-8234（プリーチリアル）/073-447-3824（内線相談）
FAX0357-60-8232（プリーチリアル）/073-447-3823（内線相談）

設計サポートStation
三菱電機 本社・支社・営業所ホームページ
http://mitsubishielectric.co.jp/ssa/

低速サーボ エラーコード検索
三菱電機 ハイテクサポートホームページ
http://mitsubishielectric.co.jp/ssa/ecs/

この印刷物は、□□□□年□月の発行です。お断りなくに仕様を変更することがありますのでご了承ください。 □□□□年□月作成