1. 圧縮機形名

MS-BG14LCV55 形スクリュー式半密閉冷媒圧縮機

2. ピストン押しのけ量（最終段の気筒）：VH (m³/h)

\[ VH = K_1 \times D_s^3 \times L / D_s \times N \times 60 / 2 \]

- \( K_1 \) : ローター寸法による係数
- \( D_s \) : スクリューロータの直径 (m)
- \( L \) : スクリューロータの有効長さ (m)
- \( K_2 \) : 噬合角度による係数
- \( N \) : 回転数 (r.p.m)


<table>
<thead>
<tr>
<th>冷媒</th>
<th>ピストン押しのけ量</th>
<th>冷凍能力</th>
</tr>
</thead>
<tbody>
<tr>
<td>R404A</td>
<td>0.358</td>
<td>163.45</td>
</tr>
<tr>
<td></td>
<td>0.145</td>
<td>163.45</td>
</tr>
</tbody>
</table>

3. ピストン押しのけ量（最終段の前の気筒）：VL (m³/h)

\[ VL = K_1 \times D_s^3 \times L / D_s \times N \times 60 \]

- \( K_1 \) : ローター寸法による係数
- \( D_s \) : スクリューロータの直径 (m)
- \( L \) : スクリューロータの有効長さ (m)
- \( K_2 \) : 噬合角度による係数
- \( N \) : 回転数 (r.p.m)


<table>
<thead>
<tr>
<th>冷媒</th>
<th>ピストン押しのけ量</th>
<th>冷凍能力</th>
</tr>
</thead>
<tbody>
<tr>
<td>R404A</td>
<td>0.440</td>
<td>163.45</td>
</tr>
<tr>
<td></td>
<td>0.145</td>
<td>163.45</td>
</tr>
</tbody>
</table>

4. ピストン押しのけ量：V (m³/h)

\[ V = VH + 0.08 \times VL \]

- \( VH \) : ピストン押しのけ量 (m³/h)
- \( VL \) : ピストン押しのけ量 (m³/h)


<table>
<thead>
<tr>
<th>冷媒</th>
<th>ピストン押しのけ量</th>
<th>冷凍能力</th>
</tr>
</thead>
<tbody>
<tr>
<td>R404A</td>
<td>0.358</td>
<td>163.45</td>
</tr>
<tr>
<td></td>
<td>0.145</td>
<td>163.45</td>
</tr>
</tbody>
</table>

5. 1日の冷凍能力：R (トン)

\[ R = V / C \]

- \( V \) : ピストン押しのけ量 (m³/h)
- \( C \) : 定数


<table>
<thead>
<tr>
<th>冷媒</th>
<th>冷凍能力</th>
</tr>
</thead>
<tbody>
<tr>
<td>R404A</td>
<td>163.45</td>
</tr>
<tr>
<td></td>
<td>8.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>冷媒</th>
<th>冷凍能力</th>
</tr>
</thead>
<tbody>
<tr>
<td>R404A</td>
<td>19.94</td>
</tr>
</tbody>
</table>

1日の冷凍能力計算書 (1/1) Rーいー15844ー12