三菱電機株式会社 静岡製作所〈群馬〉

〈貯湯ユニット形名〉

SRT-WT466

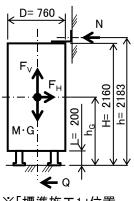
(システム形名: SRT-W466)

<計算条件>

項目	内 容
設計用水平震度 (設置階)	1.0 (中間階、上層階及び屋上)
上部固定方法	あと施工金属拡張アンカーボルト(おねじ形)M10
下部(脚)固定方法	あと施工金属拡張アンカーボルト(おねじ形)M12

<結論>

平成24年国土交通省告示第1447号対応:〔二号〕 脚部と上部を固定


計算結果から、上部を あと施工金属拡張アンカーボルト(おねじ形)M10で固定し、下部 (脚)を あと施工金属拡張アンカーボルト(おねじ形)M12で固定することにより、水平震度1.0の 地震に対して強度を有すると言えます。

なお、据付にあたっては、仕様書又は据付工事説明書をご確認ください。

〈計算の詳細〉

1. 給湯機仕様

	項目		数 値	備考
製品質量(>	製品質量(満水時)		526 [kg]	350kgを超え600kg以下
	高さ	Н	2160 [mm]	
	幅	В	630 [mm]	
製品寸法	奥行	D	760 [mm]	
	脚高さ	L	200 [mm]	
	上部固定高さ	h	2183 [mm]	h=H+23
上部振れ	金具の本数	m	1 [本]	
止め金具 ボルトの本数		m'	2 [本]	金具1本あたりの本数
重心高さ		h_{G}	1180 [mm]	
下部(脚)固	定アンカー本数	n	3 [本]	

※「標準施工1」位置 〔図1〕

2. アンカーボルトの種類(当社 施工仕様)

(1) 上部固定用アンカーボルト

(2) 下部(脚)固定用アンカーボルト

		()			(と)「日内川川八田八八川)」とう。「「ハン」			
項目			あと施工金属拡張アンカーボルト(おねじ 形)M10			あと施工金属拡張アンカーボルト(おねじ形)M12		
		記号	数 値	備考	記号	数 値	備考	
穿孔径		d _{b1}	10.5 [mm]		d _{b2}	12.7 [mm]		
埋込長さ		L _{b1}	40 [mm]		L _{b2}	80 [mm]		
アンカーボルト総本数		_	2 [本]		_	3 [本]		
アンカーボルトの呼	乎び径	d_1	10 [mm]		d_2	12 [mm]		
アンカーボルトの車	岫断面積	At	78.5 [mm²]		Au	113.0 [mm ²]		
アンカーボルトの	引張り	ft1	176 [N/mm ²]	SS400	ft2	176 [N/mm ²]	SS400	
許容応力度	せん断	fs1	101 [N/mm ²]	33400	fs2	101 [N/mm ²]	33400	
コンクリートの設計	基準強度※	Fc ₁	18 [MPa]	壁	Fc ₂	18 [MPa]	床	

(※コンクリート圧縮強度 [MPa]=[N/mm²])

3. 設計用水平震度等, 給湯機に加わる力

(1) 計算条件

項 目	記号	数 値	備考
設計用標準震度	Ks	1.0 [-]	
地域係数	Z	1.0 [-]	1.0~0.7の最大値を使用
設計用水平震度	K _H	1.0 [-]	$K_H = K_S \times Z$
設計用鉛直震度	Κv	0.5 [-]	$K_V = (1/2) \times K_H$
重力加速度	G	$9.8 [m/s^2]$	
設計用水平地震力	F _H	5.2 [kN]	$F_H = K_H \times M \times G$
設計用鉛直地震力	Fv	2.6 [kN]	$F_V = K_V \times M \times G$

(2) 各部にかかる力

項目	記号	数 値	備 考
上部金具の軸方向力	N	2.8 [kN]	$N=(F_H \times h_G)/(m \times h)$
下部アンカーせん断力	Q	1.7 [kN]	Q=F _H /n

4. アンカーボルトの強度

(1) 上部振れ止め金具固定用アンカーボルト

項目	記号数値	判	備考		
	記与	数 胆	条 件	結 果	備考
短期許容引張応力度	ft1	176 [N/mm²]	_	_	
引張応力度	σt	17.8 [N/mm ²]	σt <ft1< td=""><td>適合</td><td>σt=N/(At × m')</td></ft1<>	適合	σ t=N/(At × m')

以上より、σt<ft1なので上部固定用アンカーボルトの強度はM10サイズで十分である。

(2)上部アンカーボルトの短期許容引抜荷重(アンカーボルト引き抜き力)

『建築設備耐震設計・施工指針 2014年版』(一般財団法人 日本建築センター)

項目	記号	数 値	備 考
ボルト埋込長さ	L _{b1}	4 [cm]	40[mm] (ボルトの中心より壁辺部までの距離)>Lы
コンクリート強度	Fc ₁	1.8 [kN/cm ²]	18[MPa]
補正係数	р	0.010 [-]	$p=1/6 \times Min(Fc_1/30, 0.05+Fc_1/100)$
短期許容引抜荷重	Та	3.0 [kN]	Ta=6π・L _{b1} ²・p (ただし, Ta≦12.0[kN])

Lы≦Pb≦2×Lыなので、アンカーボルト打設間隔による許容引抜荷重の低減計算を行う

項 目	記号	数 値	備 考
打設間隔	P_b	60 [mm]	
低減率	p _r	0.875 [-]	$p_r = 1/10 \times (2.5 \times P_b/L_{b1} + 5)$
低減後許容引抜荷重	Tar	2.6 [kN]	Tar=Ta×p _r

項目	記号	数 値	判	洪 	
			条 件	結 果	備考
短期許容引抜荷重	Tar'	5.2 [kN]		_	Tar'=Tar × m'
引張力	N	2.8 [kN]	N <tar'< td=""><td>適合</td><td></td></tar'<>	適合	

以上より、NくTar'なので上部アンカーボルトの引抜きに対する強度は十分である。

(3) 下部(脚)固定用アンカーボルト

(6) 「中間の日光/11/27/27 イバリ						
項目	記号	数値	判	備考		
			条 件	結 果	備考	
短期許容せん断応力度	fs2	101 [N/mm ²]	_			
せん断応力度	τ	15.3 [N/mm ²]	τ <fs2< td=""><td>適合</td><td>τ=Q/Au</td></fs2<>	適合	τ=Q/Au	

以上より、 τ < fs2なので下部(脚)固定用アンカーボルトの強度はM12サイズで十分である。