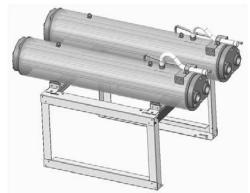
耐震強度計算書(アンカーホ・ルト)

「建設設備耐震設計・施工指針」(2005年版財団法人日本建築センター)の第2章(各部の設計) 2.1 アンカーボルトの設計に準じて検討する。

1. 機種= リモート式水冷凝縮器 2. 形名= RMW-N150A	
- 10°H	
3. 機器諸元 (1)①機器質量:M ②機器重量:W	M =
(2)アンカーホ [*] ルト ①総本数 :n	n= 4 本
① niu 不致	M 12
③一本あたりの軸断面積(呼径による断面	
④機器転倒を考えた場合の引張りを受ける	5片側のアンカーホルト総本数:nt nt= 2 本
(3)据付面より機器重心までの高さ	hG = 15.8 cm
(4)検討する方向からみたボルスパン	= <u>29.6</u> cm
(5)検討する方向からみたボルト中心から機器	:里心までの水平距離 IG= 13.8 cm (IG≦I/2)
4. 検討計算 (1)設計用水平震度 :KH	KH= 1.5 とする。
(2)設計用水平展度 .KG (2)設計用水平地震力 :FH	$FH=KH\times W=$ 2.10 kN
(3)設計用鉛直地震力:FV	$FV=1/2 \times FH= 1.05$ kN
(4)アンカーホ・ルトの1本当たりの引抜力:Rb Rb={FH·hG-(W-	-FV) •IG} / {I•nt} = 0.5 kN
(V) (5)アンカーボルトの1本当たりに作用するせん断	
	Q=FH/n= 0.53 kN
(6)アンカーボルトに生ずる応力度①引っ張り応力度 σ	$\sigma = Rb/A = $ 0.42 kN/cm ²
$\sigma = $ 0.42 <ft=②せん断応力度 <math=""> au</ft=②せん断応力度>	=
②せん断応力度 τ $\tau = 0.46$ <fs=< td=""><td></td></fs=<>	
③引っ張りとせん断を同時に受ける場合	
$\sigma = \boxed{0.42}$ <fts=< td=""><td>$fts = 1.4ft - 1.6 \tau = 23.9 \text{ kN/cm}^2$ = 23.9 kN/cm²</td></fts=<>	$fts = 1.4ft - 1.6 \tau = 23.9 \text{ kN/cm}^2$ = 23.9 kN/cm ²
	- <u>23.9 JKN</u> /CM 版財団法人日本建築センター)の第5章付録5.5より
①アンカーボルト施工 <u>法 =</u>	箱抜き式J形, JA形及びヘッドボルト付き
②コンクリート厚さ= <u>150</u> mm = ③ボルトの埋め込み長さ	= <u>0.15</u> m
L= 98 mm =	= 0.098 m
④許容引き抜き荷重 Ta=	
Ta= 4.6 kN>Rb=	= 0.5 kN
ra= <u> 4.0 4.0 K</u> NノRD= 以上の計算より、アンカーボルトは十分な強度を有	

(注)本機の施工において、アンカーボルトの頭部が据付け足の穴より脱落しない様に座金等を使用してください。


WAN33-365	

耐震強度計算書(アンカーホブルト)

「建設設備耐震設計・施工指針」(2005年版財団法人日本建築センター)の第2章(各部の設計) 2.1 アンカーボルトの設計に準じて検討する。

1. 機種= リモート式水冷凝縮器	
2. 形名= DW-N110A+RMW-N150A(×2)	
3. 機器諸元	<u> </u>
(1)①機器質量:M	$M = \boxed{311}$ kg
②機器重量:W W	$V = M \times 10/1000 = 3.11$ kN
(2)アンカーホ゛ルト	
①総本数 :n	n= <u>4</u> 本
②ボルト径:d(呼称)	M 12
③一本あたりの軸断面積(呼径による断面積)	A = 1.1304 cm ²
④機器転倒を考えた場合の引張りを受ける片	
(の) 提供工具は機能手をするの言さ	nt= 2 本
(3)据付面より機器重心までの高さ	hG= 67.5 cm
(4)検討する方向からみたボルトスパン (5)検討する方向からみたボルト中心から機器重ル	= <u> 76.0</u> cm
(5) 快削 9 る月 門からみにかが中心から機器里	「G= 36.9 cm (IG≦I/2)
4. 検討計算	IG- <u>30.9</u> cm (IG≦1/2)
(1)設計用水平震度 :KH	KH= 1.5 とする。
(2)設計用水平地震力:FH	FH=KH×W= 4.67 kN
	$FV=1/2 \times FH=$ 2.33 kN
(4)アンカーボルトの1本当たりの引抜力:Rb	
$Rb = \{FH \cdot hG - (W - F)\}$	$V) \cdot IG$ $/ \{I \cdot nt\} = \boxed{1.9}$ kN
(5)アンカーボルトの1本当たりに作用するせん断力	
	Q=FH/n= 1.17 kN
(6)アンカーボルトに生ずる応力度	
①引っ張り応力度 σ	$\sigma = Rb \angle A = 1.67$ kN/cm ²
$\sigma = \boxed{1.67}$ <ft=< td=""><td>17.6 kN/cm²</td></ft=<>	17.6 kN/cm ²
②せん断応力度 <u>τ</u>	$\tau = Q / A = 1.03$ kN/cm ²
$\tau = 1.03$ $< fs = 1.03$	10.1 kN/cm ²
③引っ張りとせん断を同時に受ける場合	
	$ts = 1.4ft - 1.6 \tau = 23.0$ kN/cm ²
	23.0 kN/cm ²
	才団法人日本建築センター)の第5章付録5.5より 箱抜き式J形,JA形及びヘットボルト付き
(1) フカーボルドルエ <u>法 — 150 mm = </u>	<u>間接されが、JAが及びペケドボルド刊さ</u> 0.15 m
②ボルトの埋め込み長さ	0.13
L= 98 mm =	0.098 m
④許容引き抜き荷重 Ta=	4.6 kN
OH I HEIMCHIE	
Ta = 4.6 kN > Rb = 6	1.9 kN
以上の計算より、アンカーボルトは十分な強度を有して	

(注)本機の施工において、アンカーボルトの頭部が据付け足の穴より 脱落しない様に座金等を使用してください。

WAN33-364